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This was my first blog—written in 2012—under theMathemtical Musings tag. The intention

was to re-visit topics in mathematics that trigger concern or disquiet in the earnest student of

the subject. My hope was that ideas that appeared puzzling or forbidding at first sight could be

coaxed to become friendly and helpful. Unhurried explanations and a different perspective

would underpin the approach. I have retained, substantially unchanged, what I first wrote,

to maintain the freshness, flavour, and vintage of the original blog, even if it is a little rough

around the edges.

Prologue

This blog is experimental in three ways.

First, this is my maiden attempt to display mathematics on a web page. It might look simple, but

believe me, it is no mean task. Thanks to the concerted efforts of many generous people, I am

using MathJax to render the mathematics via Pandoc, and its flavour of Markdown.

The second experimental feature is what I have called “slicing the orange of knowledge with a

different cut” in my book Secrets of Academic Success. The idea of multiplication runs like a thread

through much of mathematics, from the most elementary stages of counting to what constitutes

cutting edge research. Unfortunately, in the way mathematics is taught at present, multiplication

is bundled with each stage of mathematics and viewed separately as an operation in that context.

By concentrating on the single unifying idea of multiplication, and viewing it across the whole of

mathematics, we are indeed “slicing the orange of knowledge with a different cut”. Even if you

have not encountered some of the varieties of multiplication mentioned here, this exposure will

help you grasp those varieties better when you do encounter them. Please send me feedback on

whether this approach works for you.

Third, this is an extremely long blog. In fact, I call it a slog😉 . It took me some weeks to write it.

So, take your time reading it. It is unlikely that you will finish it in one sitting. Read it in parts

at your own pace. After having read it once, cast your eyes and mind over the whole to get an

overall view of the main ideas.

I thought of splitting the blog into three or four manageable parts, but decided against it because I

wanted the evolution of multiplication as an idea to be left whole in a single post. Tell me if it put

you to sleep😄 .

https://swanlotus.netlify.app/tag/mathematical-musings
https://www.mathjax.org/
https://pandoc.org/
https://garrettgman.github.io/rmarkdown/authoring_pandoc_markdown.html
https://swanlotus.netlify.app/sas
mailto:feedback.swanlotus@gmail.com
https://www.vocabulary.com/dictionary/slog
mailto:feedback.swanlotus@gmail.com


Varieties of Multiplication

With that out of the way, let us begin. I want to look at some of the varieties of multiplication

that mathematicians have developed over time. It is a survey that will serve as a pinhole through

which we can view how a single, simple mathematical idea has been expanded and elaborated

into uses far beyond its historical moorings.

Multiplication as a binary operation

Consistency is valued more in mathematics than in other disciplines. The idea is not to upset

the apple cart but to expand it. Definitions, conventions, rules, facts, and fallacies—once estab-

lished—are usually above dispute, and do not vary with time or place. So, let us start by defining

some terms.

Multiplication is a binary operation: it is something that we do with twomathematical objects,

whatever they might be. Usually, the two are similar objects or at least compatible objects. The

whole numbers are an example. We can and do multiply two whole numbers.

Multiplication as repeated addition

Practically and historically, multiplication arose as an arithmetic convenience for repeated addi-

tion. If we add the number 3 four times, we have

3 + 3 + 3 + 3 = (3 + 3) + (3 + 3) = 6 + 6 = 12

The reason for adding 3 in pairs, as shown above, is that addition is a binary operation, just like

multiplication. Using the shorthand ofmultiplication, wewrite this as 4×3 = 12. So, multiplication

is a shorthand for repeated addition.

When we see the arithmetic expression 4 × 3, we say “four times three” in English. Or, we could

equally well say “four threes”, as I was taught at school, which is less ambiguous and much clearer.

Think of four lots of three being added together like we have seen above:

4 × 3 = 3 + 3 + 3 + 3 = (3 + 3) + (3 + 3) = 6 + 6 = 12
↑ ↑ ↑

multiplier multiplicand product

(1)

The number 4 is themultiplier and the number 3 is themultiplicand. This is the standard definition.

We say that the “something” which is repeatedly added, is themultiplicand. The number of times

that “something” is added is themultiplier. And the result of this operation is the product. Thus far

we are in perfect harmony with accepted usage.

Commutativity and multiplication

Multiplication of numbers is commutative, i.e., the multiplier and multiplicand can change roles

without affecting the result.

4 × 3 = 3 × 4 = 12. (2)
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Varieties of Multiplication

Note that at the very left of Equation (2), 4 is the multiplier, and 3 the multiplicand, whereas in the

middle of Equation (2), 3 is the multiplier and 4 the multiplicand. To labour the point,

3 × 4 = 4 + 4 + 4 = (4 + 4) + 4 = 4 + (4 + 4) = 12
↑ ↑ ↑

multiplier multiplicand product

(3)

Although the two numbers have changed their names and roles from Equation (1) to Equation (3),

the result is the same because the multiplication of numbers is commutative.

To accommodate our zeitgeist, the distinction between multiplier and multiplicand is fading away,

in favour of the symmetrical and neutral term factor. The result of multiplying two factors is still

the product, as before.

Rectangular numbers

Historically, stones were used to count. And the stones representing any number may be arranged

in geometric shapes, like lines, triangles, rectangles, and so on. This gives us a geometrical or

pictorial representation of numbers.

All numbers which are the products of two whole numbers, neither of which is one, may be

expressed as rectangular numbers. The symbolic operation 4 × 3 may be shown pictorially as

a series of 12 icons arranged four across and three high. Because we may swap the order of

multiplication, we may also show it as 12 rectangles three across and four high. As we have seen,

multiplication of numbers is commutative. The image below shows this equivalence.

Figure 1: The multiplier is the number of rows, and the multiplicand is the number of columns.

Factorization is not unique

There is a subtle but important point to grasp here. The product 12 is called a composite number

and its factors in the illustrated representation are 4 and 3. But this factorization is not unique. We

could have equally correctly claimed that 2×6 = 12 leading to a different factorization. While we

may assert that both 4×3 and 2×6 lead to the same unique composite number as the product, we

cannot reverse the process and claim uniqueness of factors for any particular composite number.
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Varieties of Multiplication

Figure 2: Twelve is a composite number. It may be factorized as 2×6, 4×3, or as the trivial 1×12.

Square numbers

A square is a special case of a rectangle whose length and width are equal. When we write

3 × 3 = 9, and we arrange the resulting nine squares in a rectangle, we get a square number of

three squares by three squares. This is why we say that we are squaring a number when we

multiply it by itself.

Figure 3: Nine is a square number. Because 3 × 3 = 9, it may be so portrayed geometrically.

One could carry this analogy further and move into three dimensions to represent a number like

3 × 3 × 3 = 27 with small cubes arranged in a large cube.1 This is why we say we are cubing a

number when we multiply it by itself twice.

Prime numbers

A number which cannot be expressed as the product of two numbers other than one and itself is

called a prime number. Prime numbers can only be arranged in a line, never in a rectangle. Seven

is a prime number as illustrated below.

Figure 4: Seven is a prime number. Its seven icons cannot be re-arranged in a rectangle.

Try to rearrange the seven icons into a rectangle to convince yourself that it is not possible and

that seven is prime. Experimenting like this will help you better understand what testing for

primality entails.

Prime numbers are like building blocks thatmay be used to build larger numbers bymultiplication.

1Try this with toy blocks to convince yourself of its truth.

Copyright © 2006–2023, R (Chandra) Chandrasekhar 4



Varieties of Multiplication

Prime factorization is unique

Let us look at the number 12 again, breaking it down this time into its prime factors so: 12 = 2×2×3.
There are two instances of the number 2 and one instance of the number 3. These numbers cannot

be decomposed any further because they are prime. If we disregard the order of arrangement of

these prime factors, i.e., we do not distinguish between 2 × 2 × 3 and 2 × 3 × 2 and so on, we may

assert that the prime factors of a composite number are unique. This statement is known as the

Fundamental Theorem of Arithmetic. It is also sometimes called the Prime Factorization Theorem.

Symbols for multiplication

If you are sharp-eyed, you might have come across the multiplication of two negative numbers by

enclosing each of them in parentheses: (). The same symbols are also used to define associativity

and distributivity later in this blog. We now look at the chequered history of how the notation for

multiplication has changed with time, need, and context.

Times sign

The symbol for multiplication that we first learn is the rotated plus sign “+” that looks like ×. It is
called the “multiplication sign” and is usually read as “times”, as we have already seen. It serves

reasonably well even when we outgrow the whole numbers and move onto fractions.

Parentheses

Parentheses, written in pairs as (), have traditionally denoted precedence during evaluation of an

expression. Division and multiplication are evaluated before subtraction and addition. This order

may be altered by including terms in parentheses, which are accorded highest priority during

evaluation. So, 5 × 4 + 1 = 20 + 1 = 21, whereas 5 × (4 + 1) = 5 × 5 = 25.

When our discourse embraces negative quantities, in order to avoid ambiguity, we need something

to enclose both the negative sign, −, and the number to which it applies. The expression 5 × −4 is
ambiguous and therefore never written so when we actually mean 5 × (−4). This notation led

to two pairs of parentheses without any explicit multiplication symbol in between to denote the

multiplication of the two enclosed numbers thus: (5)(−4) = 5 × (−4) = −20.

Juxtaposition without any symbol

The archetypal symbol for the unknown in algebra is 𝑥, which looks a little too much like the

multiplication symbol ×, especially when handwritten.

To avoid confusion, a convention was adopted that when two algebraic variables, representing

unknown quantities, were written next to each other or juxtaposed, it indicated the multiplication

of the two quantities. There is no intervening symbol between the two variables.

Thus, 𝑥×𝑦 = (𝑥)(𝑦) = 𝑥𝑦. Note that this convention is for algebraic variables only. We cannot use

this convention with digits representing numbers because of place value in our decimal system.

The number 45 does not represent the product of 4 and 5 but actually means 40 + 5 = 45.
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Centred dot

As more exotic objects entered the mathematical collection, yet another symbol was devised to

show (at least one form of) multiplication. The vertically centred dot ⋅ was used to indicate one

of the several products of vectors,which we shall discuss later in this blog. Again, the dot is not

useful in the context of digits because it could be confused with a decimal point.

So, there is both a rationale and a mathematical context for the introduction of each symbol for

multiplication, according to time, need, and circumstance.

Asterisk

The latter half of the twentieth century saw the introduction of yet another symbol for multiplica-

tion, this time for use in programming languages. Because the ASCII character set, devised during

the era of teleprinters, did not include the symbol × for multiplication, another available symbol

had to be chosen for multiplication. The winner was the asterisk, denoted by *. Note that even

with the symbol *, multiplying 3 by −4 still requires one to type 3 ∗ (−4) to avoid ambiguity.

Repeated multiplication—or exponentiation—is usually represented by a double asterisk ** in

most computing languages, although a caret ^ assumes this function in some languages.

Laws of arithmetic

We now return to the assertion, made at the start of this blog, that multiplication is a binary

operation: something that happens between twomathematical objects. You might object that we

can and do multiply three numbers. For example, 2 × 3 × 5 = 30 and no one would doubt the

veracity of that assertion. Why then is multiplication classified as a binary operation and how

might it be reconciled with what we know about the multiplication of three or more numbers?

Early mathematics was eminently practical, concerned with computing areas and volumes, profit

and loss, and so on. In the course of time, mathematicians started to systematize their body of

knowledge by introducing logic and rigour into their subject. They wanted to move beyond ad

hoc methodology and construct an intellectual edifice that was stable, durable, and generalizable.

The real numbers as a field

Some of the most unpleasant experiences of school mathematics are the sudden and unexpected

changes that intrude into the familiar arithmetic of primary school. Division, fractions, negative

numbers, multiplication by zero, product of two negatives being positive, etc. are a few examples.

When rule upon unanticipated rule is foisted on the young student, with no rhyme or reason, the

student gets overwhelmed and develops a distaste for mathematics or even a reflex fear of it. This

need not be so.

One way out is a quick but easy introduction to some ideas of abstract algebra which lay the

foundation for all subsequent mathematics. This way, all the rules are bunched together as

unquestioned assumptions or axioms. Then, based on those assumptions, we build amathematical

edifice that is logical, consistent, and extensible. Mathematics will then be changed from a

mysterious game with ever-changing rules into a trustworthy friend who can be relied upon.
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Varieties of Multiplication

The numbers we use every day are drawn from a set called the real numbers denoted by ℝ.
Numbers such as 0, 1, −200, 50004, 1

2
, − 3

4
, 0.3333⋯, −0.5,√2, 𝜋, and countless others belong to

this grab bag set.

The set ℝ comes bundled with two binary operations: addition, denoted by +, and multiplication

denoted by × or by other means as outlined above. One property that makes real numbers so

useful is that any addition ormultiplication of real numbers results in another real number. This is

called closure and is an important aspect of real arithmetic. In addition, the reals also exhibit other

familiar behaviours—with fancy-sounding names—which are tabulated below, using arbitrary

real numbers, 𝑎, 𝑏, 𝑐.

Table 1: Axioms for the real numbers

Property Addition Multiplication

Associativity (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐) (𝑎𝑏)𝑐 = 𝑎(𝑏𝑐)
Commutativity 𝑎 + 𝑏 = 𝑏 + 𝑎 𝑎𝑏 = 𝑏𝑎
Identity 𝑎 + 0 = 𝑎 = 0 + 𝑎 𝑎 · 1 = 𝑎 = 1 · 𝑎
Inverse 𝑎 + (−𝑎) = 0 = (−𝑎) + 𝑎 𝑎𝑎−1 = 1 = 𝑎−1𝑎 for 𝑎 ≠ 0

For the record, formal definitions for the above terms are available on the Web from reputable

sites whose links are listed below:

1. Associativity.

2. Commutativity.

3. Distributivity. Multiplication is distributive over addition. For completeness, we define

Left Distributivity 𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐
Right Distributivity (𝑎 + 𝑏)𝑐 = 𝑎𝑐 + 𝑏𝑐

In our case, both conditions hold, and we may simply say thatmultiplication is distributive

over addition for the reals.

A mathematical object consisting of a set with two binary operations having the above properties

is called a field. The real numbers constitute a field.

Associativity of multiplication

Because multiplication is binary, we can only multiply two numbers at any one time. If we need to

multiply together three or more numbers, we have to multiply two of them first to get a single

product before we can multiply it with next number, and so on.

The associative law simply states that when we multiply three numbers, it does not matter which

two of the three we multiply first; the result will always be the same. It is this property that allows

us to write something like 2 × 3 × 5 or 𝑎𝑏𝑐 and still make sense—because it denotes something

unique—even though we know that multiplication is a binary operation.
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In addition to the three properties of associativity, commutativity, and distributivity, the real

numbers we use every day have an additive identity and inverse in Table 1. These are considered

next.

The additive identity and inverse in ℝ

The additive identity in ℝ is 0. This means that for any 𝑎 ∈ ℝ, 𝑎 + 0 = 0 + 𝑎 = 𝑎. The additive
inverse of 𝑎 is (−𝑎) and this means 𝑎 + (−𝑎) = (−𝑎) + 𝑎 = 0.

When we add together a number and its inverse, we get the additive identity.

Another way of understanding the additive inverse is to look at it geometrically as a reflection

in a double-sided mirror placed perpendicular to the real line at the position of 0. Why at zero?

Because zero is its own additive inverse. The reflection of zero in the mirror gives us back zero.

Figure 5: Geometric interpretation of the additive inverse.

With reference to Figure 5, the mirror is the silver-colored line placed at zero. The irrational

number 𝑎 = √2, represented by the red dot, is reflected in the red silvered side of the mirror to

give the blue dot, which is −𝑎 = −√2. A second reflection of −𝑎 = −√2 on the blue silvered side

gives us back the original number 𝑎 = √2. This means that the additive inverse of the additive

inverse gives us back the original number.

At the risk of expounding the obvious, let us take another look at a pictorial representation of

how to obtain the additive inverse of a number 𝑥 ∈ ℝ. This is illustrated graphically in Figure 6.

Every ordered pair of coordinates lying on the straight line 𝑦 = −𝑥 represents a number and its

additive inverse. So, if 𝑥 = 𝑎, 𝑦 = −𝑎, and the ordered pair (𝑎, −𝑎) represents a number and its

additive inverse. Moreover, the ordered pair (−𝑎, 𝑎) also lies on this line and again represents a

number and its additive inverse, this time for 𝑥 = −𝑎 and 𝑦 = 𝑎. This view might be helpful for

those who think in terms of pictures rather than symbols.

An even more concrete algorithm to obtain the additive inverse is now given. Suppose we want

the additive inverse of 1.5. We draw a vertical line from 1.5 on the 𝑥-axis to cut the line 𝑦 = 𝑥 and

then extend the line horizontally until it cuts the 𝑦-axis at −1.5. This last number is the additive

inverse. It is clear from Figure 6 that the only point that is invariant to this operation is 0 which

maps to itself. The additive inverse of the additive identity is itself.

We show later in Equation (7) that multiplying 𝑎 by (−1) also gives us its additive inverse.
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Figure 6: A graphical construction to obtain the additive inverse.

The multiplicative identity and inverse in ℝ

We next consider the multiplicative identity and inverse in ℝ which are also shown in Table 1.

The multiplicative inverse for arbitrary 𝑎 ∈ ℝ is defined as
1
𝑎
for 𝑎 ≠ 0. Why the exclusion of

zero? Let us look for a graphical reason.

If we plot 𝑥 against its multiplicative inverse
1
𝑥
, we would get a rectangular hyperbola, as shown

in Figure 7.2 We have coloured the two “arms” of the hyperbola in the first and third quadrants

in blue and red respectively, although they are part of the same curve.

A construction to get the multiplicative inverse of some point 𝑎 (not equal to zero) is to locate the

point with the 𝑥 coordinate 𝑎 on the curve and to find out its 𝑦 coordinate. Every ordered pair

(𝑎, 1
𝑎
) therefore represents a number and its multiplicative inverse, with the proviso that 𝑎 ≠ 0.

Indeed, we cannot ever get to 𝑎 = 0 on a graph of the hyperbola.

Note the following insights from Figure 7:

a. The function becomes unbounded as 𝑥 approaches 0. This happens both from the positive

and negative sides. Symbolically, lim𝑥→0+
1
𝑥
= ∞ and equally, lim𝑥→0−

1
𝑥
= −∞.3 This is

why 0 has no multiplicative inverse.

b. The multiplicative inverse has the same sign as the original number, since the hyperbola has

two “arms”.
2We use the familiar 𝑥 instead of 𝑎 in the graphical context.
3There is no limit as 𝑥 → 0.
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c. There are only two values of 𝑥 for which themultiplicative inverse is also the original number.

They are at 𝑥 = 1 and 𝑥 = −1. This is because the line 𝑦 = 𝑥 intersects the hyperbola at two

points: (1, 1) and (−1, −1).

Figure 7: The multiplicative inverse in ℝ plotted as 𝑦 = 1
𝑥
.

Where have subtraction and division disappeared?

If you are wondering where subtraction and division have disappeared, they are hiding in plain

sight. Subtracting 𝑏 from 𝑎 amounts to adding the additive inverse of 𝑏 to 𝑎. So,

𝑎 − 𝑏 = 𝑎 + (−𝑏)

Likewise, dividing 𝑎 by 𝑏 ≠ 0 amounts to multiplying 𝑎 by the multiplicative inverse of 𝑏which

equals
1
𝑏
:

𝑎 ÷ 𝑏 = 𝑎 × 1
𝑏 =

𝑎
𝑏 for 𝑏 ≠ 0.
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Multiplying any number by zero always gives zero

Recall from Table 1 that 0 is the unique additive identity. Zero’s claim to notoriety is that it does

not have amultiplicative inverse. And this is because any numbermultiplied by zero gives zero.

Consider an arbitrary number 𝑎 ∈ ℝ. Recall also that because 0 is the additive identity, 0 + 0 = 0.
We may then claim that

𝑎 ⋅ 0 = 𝑎 ⋅ (0 + 0) 0 is the identity for addition
𝑎 ⋅ 0 = 𝑎 ⋅ 0 + 𝑎 ⋅ 0 distributive law; subtract 𝑎 ⋅ 0

0 = 𝑎 ⋅ 0

(4)

Note that if we take 𝑎 = 0, the product of zero with itself is also zero—something which might be

dismissed as trivially obvious, but which could be deceptively difficult to prove.

We have carefully tiptoed our way to justify each step with one of the field axioms. This is the

power of the axiomatic approach. There is no “wasted” axiom; there is no “missing” axiom. The

set of axioms are the minimum necessary for the numbers to rest on a stable foundation.

Thisminimal sufficiency is at the heart of why mathematics is so strong. It has no extra fat. There

is also no deficiency. It is frugal but sufficient. We will encounter this same idea in the statement

that a basis is a minimal spanning set in a vector space.4 Any other algebraic structures, like the

complex numbers ℂ, that obey the same axioms as ℝ, also have the same properties.

If you feel that Equation (4) is too much sleight of hand, and you would like something more

concrete, you can always console yourself with the convenient but specific example of 5 × 0. Here
5 is the multiplier and 0 the multiplicand. So, we may write:

5 × 0 = 0 + 0 + 0 + 0 + 0; multiplication is repeated addition

= (0 + 0) + (0 + 0) + 0; addition is a binary operation

= (0 + 0) + 0; 0 is the additive inverse
= 0. 0 is the additive inverse

And the choice of a whole number made it easy to see the multiplication as repeated addition.

What about 0 × 5? Because multiplication is commutative, we may assert that 0 × 5 is also 0,
without doing any additional work. I hope you are getting to see mathematics as treasure hunt

with clues and short cuts that lead to an exciting finale. If you are interested in pursuing these

ideas further, please read this excellent article online [1].

Product of a positive and a negative number

Negative numbers arose when loans had to be given and taken. They also find use in describing

the depth of an ocean trench as being so much below sea level. Other applications arise naturally

with temperatures below the freezing point or with electric charges of a negative type, etc.

4Which is the subject for another blog.
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The signs of products featuring negative numbers are not intuitively comprehensible. So, we

have to rely on the axioms to guide us to consistent results. What is the sign of the product of

a positive and a negative number? To find out, we first prove thatmultiplying a number by the

additive inverse of another number gives the additive inverse of their product, i.e.,

𝑎(−𝑏) = −(𝑎𝑏) (5)

To prove Equation (5), we use the fact that zero multiplied by any number is zero, as shown in

Equation (4).

𝑎 ⋅ 0 = 𝑎(𝑏 + (−𝑏)) additive inverse

0 = 𝑎𝑏 + 𝑎(−𝑏) distributive law; add −(𝑎𝑏)
−(𝑎𝑏) = 𝑎(−𝑏)

(6)

If we now assume that 𝑎 and 𝑏 are both positive, then 𝑎𝑏 is positive, and (−𝑏) is negative. The
product of 𝑎 and (−𝑏) is the negative number −(𝑎𝑏). So, the product of a positive and a negative
number is a negative number. Conversely, a negative number may be split into the product of a

positive number and a negative number.

One interesting corollary from Equation (5) and Equation (6) is:

(−1)(𝑎) = −(1 ⋅ 𝑎).
= −𝑎

(7)

This means that the additive inverse of a number is obtained by multiplying the original number by

(−1). This we also already know from Figure 6.

These slow but careful explanations might seem contrived, but they provide guardrails against

falling offwhen future mathematical objects are encountered. And it is a whole lot more satisfying

than hand-waving or saying “Just take it on faith.”

Why is the product of two negative numbers positive?

Let us use the field axioms to navigate our way to this result as well.

Let 𝑎 > 0, 𝑏 > 0 ∈ ℝ. Then, both (−𝑎) and (−𝑏) are negative. Note that 𝑎𝑏 is positive and its

additive inverse is −(𝑎𝑏) = (−𝑎)(𝑏) = (𝑎)(−𝑏) which is negative from our previous result.

The scheme we have followed so far is to add something to the object of interest and use the

axioms to prove that the sum is zero. The result we are after will then pop out. Let us apply that

method again, using the final result fron Equation (6):

−(𝑎𝑏) + (−𝑎)(−𝑏) = (𝑎)(−𝑏) + (−𝑎)(−𝑏); result from previous section

= (𝑎 + (−𝑎))(−𝑏) distributive law

= (0)(−𝑏) additive inverse

= 0. zero mutiplied by anything is zero
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The upshot is that we have −(𝑎𝑏) + (−𝑎)(−𝑏) = 0which means that they are additive inverses.

Since the additive inverse of −(𝑎𝑏) is 𝑎𝑏, we conclude that (−𝑎)(−𝑏) = 𝑎𝑏 implying that the

product of two negative numbers is a positive number. With the axioms to guide us, we can move

with the sure-footedness of a mountain goat as we scale the heights and depths of each proof.

I have dealt with the arithmetic of fractions and negative numbers in my freely downloadable

chapter “Arithmetic Revisited” from Secrets of Academic Success. I urge you to read it if you feel

the need.

Exponentiation

Just as multiplication with whole numbers is repeated addition, exponentiation is repeated

multiplication. A new notation is used to indicate repeated multiplication. We denote it by a

superscript indicating how many times the number is multiplied: 5 × 5 × 5 = 53, and so on. The

number 5 is called the base and 3 the exponent. We call the number 53 as “five cubed” for reasons
already explained, or as “five (raised) to the (power of) three”.

What is the exponent in the number written plainly as 5? The base is 5 but the exponent is implicit

or understood but not written. If we take 5 = 51, the 5 × 5 × 5 = 51 × 51 × 51 = 53. When we

multiply numbers with the same base, we can simply add the exponents. And this fact underlies a

very powerful computational device—logarithms.

Logarithms: multiplying by adding

We may reduce multiplication to addition if we focused on the exponents of a common base.

This is exactly what was done by an eccentric Scottish laird called John Napier whose labours

have made all our lives much less tedious. The books of logarithmic tables, affectionately called

“log books” when I was at school, along with the slide rule were the mainstay of physicists and

engineers before the advent of the electronic calculator in the mid-1970s. And they all relied on

Napier’s scheme of reducing multiplication to addition.

Multiplying by adding is simple. Suppose we want to multiply 2 by 3. We follow this algorithm:

1. Express the number 2 as a power of 10: 2 ≈ 100.30103.

2. Express the number 3 as a power of 10: 3 ≈ 100.47712.

3. Add the two powers or exponents: 0.30103 + 0.47712 = 0.77815.

4. Find out what number equals 100.77815. In our case, 100.77815 ≈ 5.99998.

“Aha!” you might say. “But the answer is not exactly 6 which is the correct answer.” You are right.

With logarithms and the limited number of digits of precision, we can at best obtain a very good

approximation to a computation.

If you had to compute 23.589 × 459.1213 what would you do? You would run to a calculator and

punch in the digits to get 10830.212with very little effort today. But if you lived in a period without

electronic calculators, you would be very glad that logarithms existed, and you would happy to

chirp out the answer as 10830, thanks to Napier.
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Square roots

Taking a square root is a form of exponentiation. If I gave you a number like 9 and asked you to find

a number such that when it was added to itself, you would get 9, you would almost instinctively

divide 9 by 2 to give me 4.5 and indeed 4.5 + 4.5 = 9.

If instead, I asked you to find that number, which whenmultiplied by itself gives 9, how would you

go about solving it? We know that in this case, the answer is 3 because 3 × 3 = 9. To approach it

systematically, we need a symbol for the operation, which when performed on 9 gives us 3. For
historical reasons it was called taking the square root and the symbol√ is a stylized letter “r” for

“radix” meaning “root” in Latin [2]. So, we write√9 = 3.

But is that the whole story? Recall that the product of two negative numbers is positive. So,

(−3)(−3) = 9 as well. So, which is the “true” or “correct” square root? By convention, we associate

the positive square root with the symbol√. So, without any ambiguity,√9 = 3 and −√9 = −3.

Complex numbers

Talking about square roots and negative numbers, can we ever take the square root of a negative

number? Do such numbers exist? If so, where? And are they useful?

The squares of real numbers give rise to only two possibilities. The square of zero is zero. The

square of any non-zero real number, whether positive or negative, is always positive, as we have

just seen. So, the possibility of a negative number being the square of a real number does not ever

arise.

Butwe do encounter a different situationwhen solving an algebraic equation like 𝑥2+4 = 0. When

such equations were first encountered, mathematicians simply said that they had no solutions.

This is true even when you initially encounter them at school today. This equation has no solution

in the field of real numbers.

In the course of time, these pesky numbers—whose square is a negative number—kept popping

up insistently in unlikely places. They were then reluctantly assigned mathematical existence

with the somewhat pejorative term imaginary numbers. They were after all not real numbers!

In the course of time, a sandwich number was invented which was composed of the sum of a

real number and an imaginary number. This number was called a complex number. It is the first

of several mathematical objects we will encounter in this blog that are different from the real

numbers of everyday life.

The set of complex numbers is denoted by ℂ and is defined as

ℂ = {𝑎 + 𝑏𝑖 ∶ 𝑎, 𝑏, ∈ ℝ and 𝑖2 = −1}

In plain English, this means that the set of complex numbers, denoted by ℂ, is defined as all

numbers of the form 𝑎 + 𝑏𝑖 where 𝑎 and 𝑏 are real numbers and 𝑖, is called the imaginary unit

and is the positive of the two roots of the equation 𝑧2 + 1 = 0.5

5Because 𝑖 is often associated with current, electrical engineers often use the symbol 𝑗 instead.
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But there is a little asymmetry in the expression 𝑎 + 𝑏𝑖. While 𝑏 is multiplied by 𝑖, the 𝑎 stands

alone. Or does it? We could always write 𝑎(1) + 𝑏𝑖 to restore symmetry into the expression. Then

1 is the unit for the real part and 𝑖 is the unit for the imaginary part. I find this latter way of

writing the complex number very reassuring because it displays the symmetry that I was looking

for. In the interests of cutting through the clutter though, the (1) is dropped by convention, and

we write 𝑎 + 𝑏𝑖.

Multiplication of complex numbers

When we multiply complex numbers, we are really performing multiplication on two pairs of

real numbers with the imaginary unit sandwiched in between. Because of the property 𝑖2 = −1,
the rules of multiplication with terms involving 𝑖must be modified to honour this equation. Let

us see how, with a step-by-step example:

(2 + 3𝑖)(4 − 5𝑖) = 2(4) + 2(−5𝑖) + (3𝑖)(4) + (3𝑖)(−5𝑖)
= 8 − 10𝑖 + 12𝑖 + (−15)(𝑖2)
= 8 + 2𝑖 + (−15)(−1)
= 23 + 2𝑖.

Note that we use 𝑖2 = −1 and group like terms, but otherwise proceed as normal. If we were to

generalize this to a pair of complex numbers, we get

(𝑎 + 𝑏𝑖)(𝑐 + 𝑑𝑖) = (𝑎𝑐 − 𝑏𝑑) + (𝑎𝑑 + 𝑏𝑐)𝑖.

Although the rules of multiplication of complex numbers differ from those of real numbers, the

field axioms still hold. This is the purpose behind the development of abstract algebra. The

principle is DRY (Don’t Repeat Yourself) or, equivalently, do not re-invent the wheel.

Polar form of complex numbers

We have resorted to the unit circle to unravel the meaning of the tangent ratio and function in a

previous blog.

We now take recourse to the same unit circle to better understand the multiplication of complex

numbers. Let us press the 𝑥𝑦 coordinate plane to represent complex numbers of the form 𝑎 + 𝑖𝑏
where the real part 𝑎 is the 𝑥 coordinate and the imaginary part 𝑖𝑏 is the 𝑦 coordinate. This use of
the coordinate plane is referred to as an Argand diagram. The 𝑥 axis is labelledℜ to represent

the real axis and the 𝑦 axis is labelled ℑ to represent the real coefficient of the imaginary part,

shown in Figure 8.

The formula

𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃 (8)

is called the Euler Formula. This particular equation has been called “the unification of algebra

and geometry” by the legendary physicist, Richard Feynman [3]. Do read the transcript of his

lecture to better appreciate what exactly he means by the above quote.
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Figure 8: The complex plane with an arbitrary point 𝑧 = 𝑎 + 𝑖𝑏, represented by the point (𝑎, 𝑖𝑏)
on the unit circle. The same number may also be expressed as 𝑟𝑒𝑖𝜃 where 𝑟 = 1.
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Referring to Figure 8, we may say:

𝑎 = 𝑟 cos 𝜃
𝑖𝑏 = 𝑖𝑟 sin 𝜃

𝑟 = √𝑎2 + 𝑏2 since cos2 𝜃 + sin2 𝜃 = 1

𝑟 is called themodulus and 𝜃 the argument form of the complex number. Alternatively, it may be

called the polar representation of the complex number.

What exactly is the advantage of all this jiggery-pokery? It makes multiplication easier because

exponents are added when the numbers they represent are multiplied.

Figure 9: The multiplication of two complex numbers is more easily performed when they are
expressed in polar form. The 𝑥 coordinate is the real part and the 𝑦 coordinate the imaginary
part.

If we have two complex numbers 𝑧1 = 𝑟1𝑒𝑖𝜃 and 𝑧2 = 𝑟2𝑒𝑖𝜙, the modulus of their product is simply

the product of their moduli, and the argument is simply the sum of their arguments, as illustrated

in ??. This means:
𝑧1𝑧2 = 𝑟1𝑒𝑖𝜃 ⋅ 𝑟2𝑒𝑖𝜙

= 𝑟3𝑒𝑖𝜓 where

𝑟3 = 𝑟1𝑟2 and
𝜓 = 𝜃 + 𝜙.

(9)
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Consistency between real and complex multiplication

What happens if we used the rule for complex multiplication above but set the imaginary parts to

zero so that complex multiplication reverts to the multiplication of two real numbers? Do we get

consistent results? Let us try it by substituting 𝑏 = 𝑑 = 0 in the above case. We then have:

(𝑎 + 0𝑖)(𝑐 + 0𝑖) = [𝑎𝑐 − (0)(0)] + [𝑎(0) + (0)𝑐]𝑖
= 𝑎𝑐.

It is a great relief that the result is as expected. The multiplication of two complex numbers gives

us the same result as the earlier definition for multiplication of two real numbers when we set

to zero the imaginary parts of the two complex numbers. The definitions of real and complex

multiplication are therefore consistent.

It is a primary requirement in mathematics that when we extend the definition of an operation on

a simpler object to encompass a more complicated mathematical object, the new definition should

revert to the accepted definition for the simpler object when the complicated object reverts into

the simpler object. This is the point about consistency that I made at the start of this blog.

Complex numbers as ordered pairs

Arithmetic operations on complex numbers result only in complex numbers and do not give

rise to new types of numbers. And all complex numbers consist of two parts: a real part and an

imaginary part.

Hence, if we develop a new notation for this two-part number for purposes of arithmetic, we may

dispense altogether with the symbol 𝑖, which after all, seems somewhat out of place in a numerical

context.

The simplest notation is to represent complex numbers as ordered pairs of real numbers with the

convention that the first number is the real part and the second number is the imaginary part.

Once we have done this, we need to re-define all the arithmetic operations for these ordered pairs.

We may thus use the ordered pair (𝑎, 𝑏) to denote the complex number 𝑎 + 𝑏𝑖 and likewise, (𝑐, 𝑑)
for the complex number 𝑐 + 𝑑𝑖.

Drawing upon our previous results, we may then definemultiplication for this ordered pair as

being

(𝑎, 𝑏) ⋅ (𝑐, 𝑑) = (𝑎𝑐 − 𝑏𝑑, 𝑎𝑑 + 𝑏𝑐).

Note that order matters here: the first number of the ordered pair is the real part of the complex

number and the second is the imaginary part. We cannot swap them willy nilly. TO REMOVE

[
8
4
] + [

2
6
] = [

10
10
]

Copyright © 2006–2023, R (Chandra) Chandrasekhar 18

http://www.mathsisfun.com/definitions/ordered-pair.html


Varieties of Multiplication

Vectors

Ordered pairs lead rather neatly to the idea of [vectors.][https://en.wikipedia.org/wiki/Euc-

lidean_vector]6 Indeed, there is more than a passing resemblance between complex numbers and

two-dimensional vectors.

Both may be represented by ordered pairs of real numbers and the rules for addition and subtrac-

tion of these ordered pairs are identical. Moreover, they may both be represented as points on a

Cartesian plane. Vectors are the second new mathematical object, after complex numbers, that

we are meeting in this blog.

Figure 10: Two vectors shown as directed line segments with different lengths and directions.

A vector is traditionally defined as a quantity having two attributes: magnitude and direction. A

simple everyday example is the wind which has both a speed and direction, and may therefore

be represented by a vector. Indeed, if you have already encountered vectors, you might think of

them exclusively as directed line segments or lines of specific lengths with arrow tips as shown in

Figure 10.

Addition and subtraction of vectors: geometric viewpoint

How do we add and subtract these geometric entities, let alone multiply and divide them? If you

have done physics at high school, you will know that we use something called the parallelogram

law.

We draw a pair of two-dimensional vectors so that both originate from the same point. We then

complete the parallelogram formed by these two vectors by drawing in the other two sides. The

sum of the two vectors, or their resultant, is the diagonal of the parallelogram that starts at the

same origin as the two vectors. This is something best grasped from a picture: see Figure 11.

The origin of the Cartesian plane is labelled 𝑂. We have three named vectors and three ordered

pairs indicate the positions of their arrow tips:

1. u : the vector from 𝑂 to the point (8, 4);
2. v : the vector from 𝑂 to the point (2, 6); and
3. w : the vector from 𝑂 to the point (10, 10).
6Properly called Euclidean vectors in our context.
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Figure 11: The parallelogram law for the addition of two vectors.

The dotted grey lines indicate the two sides of the parallelogram that we draw to close the figure.

The vector w is the diagonal that represents the sum of u and v. This sum is written as

u + v = w

If you look at the illustration carefully, you would note that if we added the first co-ordinate of

u and the first co-ordinate of v we get the first co-ordinate of w. And likewise for the second

co-ordinate.

So, we may represent the addition of u and v as row vectors, so

(8, 4) + (2, 6) = ((8 + 2), (4 + 6)) = (10, 10)

Likewise, we could treat the vectors as column vectors, and write, equally correctly, as:

[
8
4
] + [

2
6
] = [

10
10
]

This is no accident. Nor is it a special case. It works for all parallelograms.7

7I leave it to you to convince yourself of this. (Hint: use graph paper, draw the co-ordinate axes, and use algebraic
variables for the co-ordinates of u, v, and w.)
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The parallelogram law is a geometric statement of what happens when we add two ordered pairs

the way we would two complex numbers:

(𝑎, 𝑏) + (𝑐, 𝑑) = (𝑎 + 𝑐, 𝑏 + 𝑑)

Wemay therefore dispense with line segments and arrow tips and abstract vectors as ordered

pairs even as we rescued complex numbers from explicit association with 𝑖.

Addition and subtraction of vectors: algebraic viewpoint

We may identify two-dimensional vectors uniquely by an ordered pair representing their co-

ordinates on the Cartesian plane. This is the algebraic viewpoint. It is less cumbersome and more

powerful as we have already seen from the addition of two vectors.

Subtraction is equally simple. We may add the additive inverse of each component of the vector

being subtracted to get:

(8, 4) + (−(2), −(6)) = (8, 4) + (−2, −6) = (6, −2)

Geometrically, this is tantamount to reversing the second vector and adding it to the first. Of

course, plain old subtraction also works, provided we allow for negative numbers:

(8, 4) − (2, 6) = (6, −2)

Both results are the same and again underline the consistency that runs through mathematics

like a golden thread. 😄

Vectors as algebraic entities

We have just seen that two-dimensional vectors may be represented by ordered pairs on the

Cartesian plane. This representation might be extrapolated to include vectors of dimensions

greater than two. Obviously, we would then be moving from ordered pairs to ordered triples, etc.8

To generalize, we may think of vectors as a list of “numbers in a slim teabag” where their order

matters. Formally, an𝑛-dimensional vector is an ordered list of𝑛numberswrittenwithin enclosing

parentheses or brackets and treated as a single entity. This is also called an ordered n-tuple. Each

individual number is called a component of the vector.

8An ordered triple, for example, would live in our familiar three-dimensional space.
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The components of a vector may be written within parentheses or brackets. Theymay be arranged

vertically as a column vector of a single column and 𝑛 rows or horizontally as a row vector of a

single row and 𝑛 columns. A column vector may be transposed into a row vector. Transposition is

indicated by the superscript 𝑇. For example, with 𝑛 = 4

⎡
⎢
⎢
⎢
⎣

𝑎
𝑏
𝑐
𝑑

⎤
⎥
⎥
⎥
⎦

𝑇

= [𝑎 𝑏 𝑐 𝑑]

[𝑎 𝑏 𝑐 𝑑]
𝑇
=
⎡
⎢
⎢
⎢
⎣

𝑎
𝑏
𝑐
𝑑

⎤
⎥
⎥
⎥
⎦

Note that there are no commas separating the elements of a row vector unlike in ordered pairs.

Also, we could just as well have used parentheses as brackets.

It is conventional to assume that an arbitrary vector is a column vector. Row vectors are then the

transposes of the column vectors. This is the convention we will follow.

Row-column nomenclature

The size of a vector is denoted by writing down the number of rows followed by a × sign followed

by the number of columns. Thus a column vector with four rows is a 4 × 1 column vector while a

row vector with four columns is a 1 × 4 row vector.

By definition, a vector must have at least one dimension equal to 1. When both dimensions are

equal to one, the vector degenerates into a single component which, in the context of vectors, is

called a scalar to distinguish it from a vector.

Addition and subtraction of vectors

Addition and subtraction for the ordered n-tuples representing two vectors may be defined as the

addition or subtraction of their respective components.

Just to free ourselves from geometrical thinking about vectors, let us add two four-dimensional

vectors whose components are given by algebraic variables representing real numbers.

⎡
⎢
⎢
⎢
⎣

𝑎
𝑏
𝑐
𝑑

⎤
⎥
⎥
⎥
⎦

+
⎡
⎢
⎢
⎢
⎣

𝑝
𝑞
𝑟
𝑠

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑎 + 𝑝
𝑏 + 𝑞
𝑐 + 𝑟
𝑑 + 𝑠

⎤
⎥
⎥
⎥
⎦
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Subtraction is equally “commonsensical”:

⎡
⎢
⎢
⎢
⎣

𝑎
𝑏
𝑐
𝑑

⎤
⎥
⎥
⎥
⎦

−
⎡
⎢
⎢
⎢
⎣

𝑝
𝑞
𝑟
𝑠

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑎 − 𝑝
𝑏 − 𝑞
𝑐 − 𝑟
𝑑 − 𝑠

⎤
⎥
⎥
⎥
⎦

These vector sums and differences would be difficult to visualize geometrically, but they are

trivially routine algebraically.

Multiplication of vectors

It is easy to think of the addition or subtraction of vectors, say in the context of “wind speed” and

“air speed” of an aircraft. But what does the multiplication of vectors consist of and what meaning

could we extract from the operation?

Vector multiplication is a strange, many-headed beast. It is important to know what it is and what

it is not. Here is a quick run down:

1. Vector multiplication is different from real number multiplication.

2. Vector multiplication is different from complex number multiplication.

3. There are several varieties of vector multiplication, some of which give us scalars, others

vectors, and still others matrices:9

(a) multiplication of a vector by a scalar to yield a vector

(b) dot product or scalar product or inner product of two vectors to yield a scalar

(c) [cross product][cross] of two vectors to yield a third vector orthogonal to the other two

(d) [tensor product][tensorproduct] or [outer product][outer] of two vectors to yield a

matrix

4. Each variety of vector product was devised as an operation because it is useful and has a

ready meaning in a particular context.

5. When it comes to multiplication, vectors reveal their nature as a class of mathematical object

quite different from real or complex numbers.

Let us consider each type of multiplication in turn.

Multiplication by a scalar

Multiplication of a vector by a scalar is the easiest to understand. In this operation, we see the

original arithmetic definition of real multiplication at play. We are magnifying or diminishing the

magnitude of the vector by multiplying it with a scalar, while the direction of the vector is either

reversed or remains unchanged.

9Ignore any unfamiliar terms for now.
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If we have a vector u and we multiply it by a scalar 𝑘 the result is the vector 𝑘u. This may be easily

visualized geometrically. If we associate u with an arbitrary four-dimensional column vector, we

may write

u =
⎡
⎢
⎢
⎢
⎣

𝑎
𝑏
𝑐
𝑑

⎤
⎥
⎥
⎥
⎦

Multiplication of u by a real scalar 𝑘 gives us

𝑘u = 𝑘
⎡
⎢
⎢
⎢
⎣

𝑎
𝑏
𝑐
𝑑

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑘𝑎
𝑘𝑏
𝑘𝑐
𝑘𝑑

⎤
⎥
⎥
⎥
⎦

When we multiply a vector by a scalar 𝑘, each component of the vector is individually multiplied

by 𝑘. The magnitude of the resulting vector takes on a different meanings depending on the value

and sign of 𝑘:

1. 𝑘 = 1: the vector is unchanged in magnitude and direction.

2. 𝑘 = −1: the vector is unchanged in magnitude but reversed in direction.

3. 𝑘 < −1: the vector is enlarged in magnitude and reversed in direction.

4. 𝑘 > 1: the vector is enlarged in magnitude and unchanged in direction.

5. −1 < 𝑘 < 0: the vector is diminished in magnitude and reversed in direction.

6. 0 < 𝑘 < 1: the vector is diminished in magnitude and unchanged in direction.

7. 𝑘 = 0: the vector has zero magnitude and its direction is undefined.

While this might seem quite a mouthful, it is really quite simple:

• a negative 𝑘 reverses the direction;
• a positive 𝑘 keeps the direction unchanged;

• value of 𝑘 that lies between −1 and 0 or between 0 and 1 diminishes the magnitude; and

• a value of 𝑘 less than −1 or greater than +1 increases the magnitude of the vector.

The special cases pertaining to 𝑘 = ±1 and 𝑘 = 0 underscore the paramount importance of 0 and 1
in the whole of mathematics. They are keystone numbers.

Did you pick up the fact that after uncoupling geometry and vectors, we finally resorted to

geometry when talking about the meaning of scalar multiplication? This dual viewpoint runs

through much of mathematical thinking.

Scalar division of vectors by 𝑘 ≠ 0 is really multiplication by
1
𝑘
and is therefore not considered

separately.
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If we view scalar multiplication as a black box, it takes in one n-tuple and gives out another n-tuple.

Like the merchant in Aladdin and the Wonderful Lamp, we are simply exchanging old vectors for

new. There is no difference in kind between the input and output mathematical objects.

The zero vector is not the number zero

Distinguish carefully between the real number 0 and the n-dimensional zero vector which results

from scalar multiplication with 𝑘 = 0. The latter is an n-tuple of zeros and does not equal the real

number zero. For example, with 𝑛 = 4, the zero vector is:

⎡
⎢
⎢
⎢
⎣

0
0
0
0

⎤
⎥
⎥
⎥
⎦

≠ 0

As and when new mathematical objects are invented (or discovered?) new definitions for the

equivalents of zero and one for these new objects may also be necessary. The 𝑛-dimensional zero

vector is unique as shown above.

The four-dimensional column vector with all entries equal to 1 exists and is, of course, unique:

⎡
⎢
⎢
⎢
⎣

1
1
1
1

⎤
⎥
⎥
⎥
⎦

≠ 1

But it is not special enough to merit its own name, as it does not function as the vector analogue to

the number 1. But it does have its uses in data analysis and might get its own name in the future!

[4]

We now turn to other varieties of multiplication that may be applied to vectors.

Dot or scalar product

The centred dot ⋅ as a symbol for multiplication makes its appearance here. The first departure

from conventional multiplication was with complex numbers. The dot product, also called the

scalar product, or inner product10 is the next variety of unconventional multiplication.

Existence of the dot product

The dot product is defined only between vectors of the same dimension. This is important to grasp.

When we deal with real numbers, the multiplicand, multiplier, and product are all real numbers.

They are mathematical objects of the same kind. So, we may afford to be a little careless in

multiplying them together without performing any check.

10An inner product is something more general, of which the dot product is a special case.
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We cannot afford to be equally lackadaisical with vectors. We have to respect the fact that they

are not numbers per se, but a different type of mathematical object. A product of some sort might

not exist between any two arbitrary vectors.

Example of dot product

It is helpful to begin with a concrete example. Let u𝑇 = [1 2 3 4] and let v𝑇 = [5 6 7 8].
Their dot product is written as:

u𝑇 ⋅ v = [1 2 3 4] ⋅
⎡
⎢
⎢
⎢
⎣

5
6
7
8

⎤
⎥
⎥
⎥
⎦

= (1)(5) + (2)(6) + (3)(7) + (4)(8)
= 5 + 12 + 21 + 32
= 70

If you look at the dot product carefully, you will see the following:

1. the first component of u is multiplied by the first component of v and likewise for the other

components;

2. the individual products are then added together; and

3. the sum is the dot or scalar product.

It is now clear why the two vectors must have the same dimensions. If not, we will run out of

either multiplier or multiplicand for pairwise multiplication.

The result, being a sum of products, is a single number, or scalar, explaining the name scalar

product for this operation. We prefer the term dot product to avoid confusion with multiplication

by a scalar.

It is easy to verify by direct evaluation that the dot product is [commutative][commutative] and

therefore symmetrical. Verify if you please that u𝑇 ⋅ v = v𝑇 ⋅ u for the above case.

Why did we need to write the dot product as being between a row vector and a column vector?

One reason is that the product of a column vector with a row vector is actually a different type of

multiplication which we will meet later. Another reason is that the row-column product mirrors

matrix multiplication as explained later.

General case and formula

These results for the dot product may be generalized by taking u and v to be arbitrary

𝑛-dimensional vectors whose components may be referred to by the subscripts 1 to 𝑛.
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It is conventional to write the vector itself in boldface as u or with an arrow on top as ⃗𝑢 (or

using some other mark of distinction when written by hand or printed) whereas the individual

components are always written normally. They are after all scalars.

u𝑇 = [𝑢1 𝑢2 ⋯ 𝑢𝑛]

v =
⎡
⎢
⎢
⎢
⎣

𝑣1
𝑣2
⋮
𝑣𝑛

⎤
⎥
⎥
⎥
⎦

u𝑇 ⋅ v = 𝑢1𝑣1 + 𝑢2𝑣2 +⋯+ 𝑢𝑛𝑣𝑛

=
𝑛
∑
𝑖=1

𝑢𝑖𝑣𝑖

Observe that the vector u𝑇 is a 1×𝑛 vectorwhereas v is an 𝑛×1 vector. Their dot product—between

a 1 × 𝑛 vector and an 𝑛 × 1 vector—yields a 1 × 1 “vector” which is really a scalar. In a manner of

speaking, we may “cancel out” the two inner dimensions 𝑛 to get the dimension of the product as

being 1 × 1. This mnemonic will prove useful later on as well.

Consistency with real multiplication

What happens if our two vectors degenerate into scalars having single components 𝑢1 and 𝑣1?
The dot product then collapses into plain multiplication between two numbers and equals 𝑢1𝑣1,
entirely concordant with the product of two numbers. Consistency rules once again!

Geometric viewpoint

What does the dot product mean? What does it signify given that vectors originated as physical

abstractions? We need to put on our “geometric glasses” and view the dot product geometrically.

We will need a little bit of trigonometry on the way.11

Let us consider a two-dimensional vector u from the origin 𝑂 to a point 𝑈 at (𝑢𝑥, 𝑢𝑦) on the

Cartesian plane. Let 𝑂𝑈make an angle 𝛼 with the positive 𝑥 axis as shown. Then, we have:

1. By the Theorem of Pythagoras, the magnitude of the vector u, denoted by ‖u‖, is given by

√𝑢2𝑥 + 𝑢2𝑦. The symbol ‖‖ denoting a pair of double vertical lines represents the norm or

magnitude of the vector written within it.

2. The magnitudes of the projections of u in the directions of the 𝑥 and 𝑦 axes are respectively

𝑢𝑥 = ‖u‖ cos𝛼
𝑢𝑦 = ‖u‖ sin𝛼

= ‖u‖ cos(90° − 𝛼)

The magnitude of the projection of a vector in a particular direction is equal the magnitude of the

vector multiplied by the cosine of the angle made by the vector with that direction.

11Which you might have to take on trust if it is unfamiliar or forgotten.
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Figure 12: Vector components as values of projections on the orthogonal axes 𝑥 and 𝑦 for a two-
dimensional vector u.
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We could make similar claims for a vector v at (𝑣𝑥, 𝑣𝑦) that makes an angle 𝛽 with the positive 𝑥
axis.

Let the angle between the two vectors be denoted by 𝛼−𝛽 = 𝜃. The dot product of the two vectors

may then be written as:

u ⋅ v = 𝑢𝑥𝑣𝑥 + 𝑢𝑦𝑣𝑦
= ‖u‖ cos𝛼‖v‖ cos 𝛽 + ‖u‖ sin𝛼‖v‖ sin 𝛽
= ‖u‖‖v‖(cos𝛼 cos 𝛽 + sin𝛼 sin 𝛽)
= ‖u‖‖v‖ cos(𝛼 − 𝛽)
= ‖u‖‖v‖ cos 𝜃

Figure 13: Dot product of two vectors, u and v.

The dot product of two vectors is equal to the product of their magnitudes and the cosine of the

angle between them. It is a scalar.

Applications of the dot product

Unlike straightforward multiplication of real or complex numbers, the dot product seems a little

contrived. Why is it so defined? And is it useful?

The answers to both questions lie in the practical utility of the dot product. Vectors are used to

represent forces, displacements, momenta, and a whole host of other abstractions that are the

bread and butter of physics. And the dot product neatly dovetails with a recurring pattern of

relationships in physics where two vectors give rise to a scalar in a multiplicative fashion.

For example, mechanical work𝑊 is a scalar defined as the dot product of the vector representing

force F and the vector representing displacement s through the equation𝑊 = F ⋅ s. Alternat-
ively, work is the projection of the force in the direction of the displacement, multiplied by the

displacement. Both definitions are equivalent.

The dot product is succinct, precise, notationally crisp, and practically useful. That is why it has

been defined and that is why it still exists.
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The cosine and sine functions

The cosine and sine of an angle are trigonometric ratios from right-angled triangles that were

later expanded in scope to become mathematical functions. Graphs of cos𝑥 and sin𝑥 against 𝑥,
in the “unitless unit” called radians, are shown below.12

For now, we only need to focus on these facts, bearing in mind that 𝑥 is in radians:13

1. The values of cos𝑥 and sin𝑥 lie only between −1 and 1.

2. cos 0 = 1 and cos(𝜋
2
) = 0.

3. sin 0 = 0 and sin(𝜋
2
) = 1.

4. sin𝑥 = cos(𝜋
2
− 𝑥).

5. cos𝑥 = sin(𝜋
2
− 𝑥).

Figure 14: Graphs of cos𝑥 and sin𝑥 for the domain [−𝜋, 𝜋] in radians or [−180, 180] in degrees.
The 𝑥 axis is labelled in radians.

Oddness and evenness

Observe from these graphs that cos𝑥 is an even function that is symmetrical about the 𝑦 axis
whereas sin𝑥 is an odd function.14

Although not apparent from the graphs, both the cosine and sine functions are periodic and repeat

themselves every 360° or 2𝜋 radians for all values of the independent variable.

12See my blog A tale of two measures: degrees and radians if you are unfamiliar with radians.
13If radians bother you, keep in mind that 0° equals 0 radians and that

𝜋
2
radians equals 90°.

14These properties make the dot product a commutative operation and the cross product an anti-commutative
operation.
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Orthogonality

To recapitulate, the cosine of an angle is 1 at zero degrees and 0 at ninety degrees. Therefore

if two vectors are orthogonal—or perpendicular, or at ninety degrees—to each other, their dot

product is zero.

For example, a force vector F has no effect perpendicular to the direction in which it acts, and this

is because its component or projection in that direction is ‖F‖ cos 90° = 0.

The dot product therefore measures the degree of alignment or similarity between two vectors.

When the angle between them is zero degrees, this alignment is at its greatest. When the vectors

are orthogonal, each vector has no component in the direction of the other; so they are independent.

When the two vectors make an angle greater than 90° the sine of their angle is negative. The two

vectors act in opposition when they are at an angle of 180° with each other.

Orthogonality—and the independence of vectors it implies—is a very powerful property that finds

application daily whenever we talk over the telephone or download a compressed image from

the Web.

The idea of projecting some mathematical object onto another and the idea of one mathematical

object being orthogonal to another are both fundamental to many areas of mathematics and are

well worth keeping in mind.

We now move on to the next type of vector product.

Cross product

The third type of vector product is the cross product. Because the dot product gave a scalar result

that involved the cosine function, you might ask tongue in cheek, whether the cross product

produces a vector result that involves the sine function in its definition. And facetious or not, you

are actually right. 😄

The cross product is a vector and it does involve the sine of the angle between the two vectors. In

addition, just as in the dot product, orthogonality peeps at us again through the cross product.

We will consider three-dimensional vectors. Any pair of three-dimensional vectors u and v

between them define a two-dimensional plane. Just think of two rulers arranged in any orientation

on a flat table to visualize and understand why.

The result of a cross product is orthogonal to the two vectors giving rise to it. There are two

directions orthogonal to the plane. Think of the flat table again. An arrow at right angles to the

table coming out of it and pointing upwards is in one direction. Now reverse the direction of the

arrow so that it goes into the table pointing downwards. This is the other orthogonal direction.

They both lie along the same straight line but are oriented in opposite directions.

We are now ready to define the cross product as

w = u × v

≜ (‖u‖‖v‖ sin 𝜃)n
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Figure 15: The cross product of two vectors, u and v is given by w. The direction of the angle 𝜃 is
from u to v. By the right-hand rule, w is positive in the direction of its arrow.

Both the vectors u and v point outward from the same origin 𝑂. The cross product vector w is

perpendicular or orthogonal to both u and v and again points outward from the same origin 𝑂.

The expression (‖u‖‖v‖ sin 𝜃) is a scalar. n is a unit vector perpendicular to both u and vwith a

magnitude of one. Its direction can only be one of two as we have seen. To determine which, we

use a convention called the right-hand rule or right hand corkscrew rule.

Imagine that you are rotating a corkscrew starting at u and moving toward v. The direction in

which the corkscrew advances is the positive direction for the unit vector n.15

Since the corkscrew would then move upwards, that is the direction of both w and n. The sole

purpose of n is to indicate the direction of w as determined by the right-hand rule. The letter n is

used to indicate that it is normal or perpendicular to the plane. The only purpose of n is to denote

the direction of w. Being a unit vector, the magnitude of n is ‖n‖ = 1.

In the cross product, we have just met the × sign for multiplication again, but so far afield from

its original use and meaning that it is almost unrecognizable except for form. Many mathematical

terms and symbols are reused in different contexts with completely different meanings.

Anti-commutativity

If we were to compute v × u we would turn the right-handed corkscrew from v to u and the

cross-product vector would then point downwards. Its magnitude would however be the same as

before. We therefore write:

v × u = −(u × v)
15This is a convenient mathematical convention which is also in accord with actual physical situations.
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The cross product is said to be anti-commutative. This means that if we reverse the order of the

operands, there is a change in the sign of the result. In contrast, the dot product is commutative.

So, each variety of vector multiplication has its own well-delineated properties.

Applications of the cross product

Like the dot product, the cross product owes its ubiquity to its usefulness in physics. For example,

the torque vector 𝝉16 is defined by 𝝉 = r × F. Torque is what makes the wheels of a car rotate.

Visit this page to see an animation and explanation of what the term “torque” means. The cross

product also simplifies the mathematical description of the laws of electromagnetism.

Outer product of two vectors

The outer product is the last of the four varieties of multiplication for vectors that we will consider

here.

Recall that the dot product is defined as the scalar resulting from the multiplication of a 1 × 𝑛 row

vector with an 𝑛 × 1 column vector. The result was a 1 × 1 “vector” which is really a scalar. The

two “inner dimensions” 𝑛 cancel out.

What happens if we swap the order and start multiplying an 𝑛 × 1 column vector with a 1 × 𝑛
row vector? Would the two “inner dimensions,” both equal to 1, cancel out? And would we get an

𝑛 × 𝑛 “vector” of some sort?

Indeed we do. And the resulting product is a different mathematical object called a matri. This is

an example of a mathematical operation involving two known mathematical objects whose result

gives rise to a new kind of mathematical object which then acquires a life and personality of its

own.

This type of multiplication is called an outer product, in contrast to the dot product which is a

type of inner product. It is also sometimes called a tensor product in honour of the fact that we

are ascending a hierarchy in linear algebra that starts with scalars and moves on to vectors and

then to matrices and on to tensors with progressive generalizations at each step.

Outer product: symbol and example

The symbol for the outer product is⊗ which is a “circled times” sign.

As already presaged, the outer product results from the multiplication of an𝑚× 1 column vector

and a 1 × 𝑛 row vector to give an𝑚× 𝑛matrix. As with the dot product, the “inner dimensions”

of the two vectors, both equal to one here, “cancel out” in a manner of speaking, to yield a matrix

of dimension𝑚× 𝑛.

In contrast to the dot product, however, the two vectors may have different numbers of elements.

This is why the resulting matrix is not necessarily a square matrix with equal numbers of rows

and columns, but rather has𝑚 rows and 𝑛 columns. The values of𝑚 and 𝑛may be equal but are

not required to be so.

16Pronounced tau.
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Here is an example that will help you decipher how the outer product is computed:

⎡
⎢
⎢
⎢
⎣

1
2
3
4

⎤
⎥
⎥
⎥
⎦

⊗ [5 6 7] =
⎡
⎢
⎢
⎢
⎣

5 6 7
10 12 14
15 18 21
20 24 28

⎤
⎥
⎥
⎥
⎦

Each element of the outer product matrix is the product of a pair of real numbers. What is new

here is their position in the product matrix and their meaning in this context.

The outer product is non-commutative

The outer product is not commutative. To see why, consider u as an𝑚× 1 column vector and v𝑇

as a 1 × 𝑛 row vector. Then, u⊗ v𝑇 gives an𝑚×𝑛matrix. But v⊗ u𝑇 gives an 𝑛 ×𝑚matrix. The

two are obviously not constrained to be equal.

Applications of the outer product

The outer product finds application in fields like physics, electrical engineering, and statistics.

Whether application precedes or follows the original mathematical development, whenever a

new mathematical object persists, it is almost always due to its usefulness for some purpose or

other.

The outer product of two vectors leads to matrices and themultiplication of matrices is yet another

variety of multiplication. It is the last we will consider in this blog.

Matrices

We have already seen that a matrix consists of a lot more “numbers in a teabag” in which order is

respected. An𝑚× 𝑛matrix is an array of𝑚 rows and 𝑛 columns of numbers. A row vector is just

a degenerate matrix with one row, i.e.,𝑚 = 1, whereas a column vector is a degenerate matrix

with a single column, i.e., 𝑛 = 1. The plural ofmatrix ismatrices.

Hark back to complex numbers and remember how the real numbers aremerely complex numbers

whose imaginary parts are zero. We hear a similar refrain with matrices, vectors, and scalars.

Vectors are matrices with one column or one row. A matrix with a single column and row is a

scalar.

Each time a mathematical object is generalized, we will see a previously defined object appearing

as a degenerate case of the new object. This provides a link between the new and the old and also

ensures that consistency is maintained in this evolutionary spiral.

It is customary to refer to a matrix by an uppercase letter. The individual numbers, or elements,

of a matrix are usually denoted by a lowercase letter and given double subscripts denoting their

position in the matrix.
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The element 𝑎𝑖𝑗 in a matrix 𝐴 is the element occupying the 𝑖th row and the 𝑗th column in the

matrix. For the subscript, the row number is written first followed by the column number. If all

this seems too abstract, here is a concrete example of a 2 × 3matrix:

𝐴 = [
1 3 5
2 4 6

]

where we have 𝑎12 = 3 and 𝑎21 = 2.

Applications of matrices

Matrices arose naturally from the study and solution of systems of linear equations. They are

also useful in succinctly embodying geometric transformations of points in the two-dimensional

Cartesian plane. They are profoundly useful in electrical engineering, physics, economics, and

many other fields.

Indeed, if one considers matrices as a class of mathematical object, what we do with them and

the meanings we assign to these actions are largely limited only by our imagination and the

mathematical consistency of the results. This is how new mathematics is built up from the old,

and constantly expanded in scope, variety, and application.

Matrix multiplication

The product of matrix 𝐴with matrix 𝐵 is denoted by 𝐴𝐵with no intervening symbol. If matrix

𝐴 has dimensions𝑚× 𝑛, and matrix 𝐵 has dimensions 𝑝 × 𝑞, and we wish to multiply them in

that order,we first need to ensure that the “inner dimensions,” 𝑛 and 𝑝 in this case, are indeed

equal. If 𝑛 = 𝑝 the two matrices 𝐴 and 𝐵 can be multiplied together to yield the 𝑚 × 𝑞matrix

𝐴𝐵, and the two matrices are said to be conformable. Otherwise, the product 𝐴𝐵 does not exist.

Conversely, if 𝑛 ≠ 𝑝 but 𝑞 = 𝑚, the matrix product 𝐵𝐴 exists and the result is a 𝑝 × 𝑛matrix.

Any two real numbers may be multiplied together, but the product of any two matrices need

not necessarily be defined. As the mathematical objects that we deal with become increasingly

complex, additional constraints often apply to operations on them.

Example of matrix multiplication

Figure 16: How the product of two matrices is computed. Like coloured elements are multiplied
together, and those products summed, to give the single result shown in black. The algorithm is
repeated until exhaustion.
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Here is an example of matrixmultiplication. We group awhole row on the left matrix andmultiply

it element-wise with a whole column on the right matrix and add all the products. In this case, we

compute (1)(7) + (2)(9) + (3)(1) = 7 + 18 + 3 = 28.

This is reminiscent of the dot product. Indeed, matrix multiplication may be viewed as a gen-

eralization of the dot product for matrices and the dot product as a degenerate case of matrix

multiplication in which the left matrix is a row vector and the right matrix is a column vector.

Non-commutativity

For any two matrices 𝐴 and 𝐵, the matrix product 𝐴𝐵 exists only if the matrices are conformable,

i.e., the number of columns in 𝐴 equals the number of rows in 𝐵. Likewise, the product 𝐵𝐴 exists

only if the number of columns in 𝐵 equals the number of rows in 𝐴.

If both matrices are square and of the same dimensions, is their multiplication commutative? In

other words, does 𝐴𝐵 = 𝐵𝐴?

In mathematics a single exception falsifies the rule. Let us consider the following simple example:

𝐴 = [
1 3
2 4

] 𝐵 = [
5 7
6 8

]

𝐴𝐵 = [
23 31
34 46

] 𝐵𝐴 = [
19 43
22 50

]

Clearly matrix multiplication is not commutative. In any matrix product, the matrix on the left

pre-multiplies the matrix on the right. Conversely, the matrix on the right post-multiplies the

matrix on the left.

Geometric effects of matrix multiplication: 2D case

A 2 × 2matrix may be interpreted as a geometric transformation of points on the Cartesian plane.

Indeed, this is often how you might have first encountered matrices as mathematical objects.

Suppose we wish to reflect an arbitrary point (𝑎, 𝑏) using the 𝑦 axis as a mirror. With a little

visualization, you will agree that image point is (−𝑎, 𝑏).

How might a matrix accomplish this? If we post-multiply a matrix by a vector, we will get another

vector. We need to transform 𝑎 to −𝑎 while leaving 𝑏 unchanged. A little thought or tinkering

with matrices will show that required matrix is as shown below:

[
−1 0
0 1

] [
𝑎
𝑏
] = [

−𝑎
𝑏
]

Because 𝑎 and 𝑏 are arbitrary, we may associate a reflection across the 𝑦 axis with the above

matrix. Likewise, it may be shown that a counter-clockwise rotation about the origin 𝑂 through

an angle 𝜃 with the positive 𝑥-axis is associated with the matrix

[
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

]
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We can then chain together such transformations by multiplying the relevant matrices in the

correct order. Those who author video games use concepts such as these to program their games.

Pay attention to the interplay between the symbolic and the pictorial, between the algebraic and

the geometric aspects of the one operation. If you develop the ability to maintain this “dual vision”

as you study mathematics, it will be helpful for your own unfolding understanding. A strange

algebraic object correctly used might work geometric miracles right under your nose, and vice

versa.

And that completes my survey of varieties of multiplication. I do not know if you are heaving a

sigh of relief but I certainly am! We have only scratched the surface here. There are many more

varieties of multiplication and each serves a purpose. You will discover them in the course of

your studies.

Summary

This blog has been a journey through mathematics tracking multiplication as the single theme.

Multiplication happens between two mathematical objects to yield a third. In this survey, we have

encountered four different mathematical objects:

1. Real numbers

2. Complex numbers

3. Vectors

4. Matrices

The way the multiplication is accomplished as well as its meaning differ with context. We have

met seven different varieties of multiplication here:

1. Real multiplication

• product is real

• commutative

2. Complex multiplication

• product is complex

• commutative

3. Multiplication of a vector by a scalar

• product is a vector

• magnitude and direction depend on value of scalar

4. Dot product of two vectors

• product is a scalar

• commutative

• measures “similarity” or “alignment” between the two vectors

• involves cosine of angle between the two vectors

5. Cross product of two vectors
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• product is a third vector orthogonal to the two vectors

• anti-commutative

• involves the sine of the angle between the two vectors

6. Outer product of two vectors

• product is a matrix

• not commutative

7. Matrix product

• product is another matrix

• not commutative

We have made glancing acquaintance with logarithms and how they transform multiplication

into addition. We have also skimmed over the trigonometric functions, given their place in the

theory of vectors.

If you carry away nothing else from this blog than a few qualitative ideas, they should include

some of these:

1. Multiplication is a binary operation: it takes place between two compatible mathematical

objects.

2. Mathematical objects are more varied than animals in a zoo. Each has its own nature, diet,

habitat etc. Apart from the real numbers, we have encountered complex numbers, vectors,

and matrices here.

3. Multiplication is commutative for the real and complex numbers but not for necessarily for

vectors or matrices.

4. The meaning of a product has evolved a long way from the original “three lots of four” in

the context of whole numbers. The product of a multiplication might yield an object that is

quite different from the multiplicand and multiplier. We have seen scalars popping out of

dot products of two vectors and matrices issuing from the outer product of two vectors.

5. The ideas of zero and one, of symmetry, of commutativity, of consistency of definitions, of

projections, and of orthogonality, are worth remembering because they pervade much if not

all of mathematics.

May the product be with you!

To explore further

We have covered a fair bit of ground in this blog, and not all of it at the same depth. For those

who seek a greater acquaintance with abstract algebra, I would recommend three books that are

kinder, gentler introductions to the subject, written by professional mathematicians:

W W Sawyer’s A concrete approach to abstract algebra [5] was first published in 1959, but it

has retained its vigour and directness intact through more than six decades. Read it as a first

introduction to the subject.
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Bergen’s more recent book, A Concrete Approach to Abstract Algebra[6] is a modern successor to

Sawyer, sharing the same book title. It will be a good companion to Sawyer.

The third book, by Goodman, entitled Algebra: Abstract and Concrete is available at no charge

online [7]. It is very readable and concentrates a fair bit on symmetry. You could read it along

with the other two or use it to complement your understanding of symmetry.

The prolific engineer-author Paul Nahin has written a whole series of engaging popular math-

ematics and physics books. Two of them are relevant to the subject of this blog. The first is aptly

entitled An Imaginary Tale: The Story of√−1 [8]. Its sequel is Dr. Euler’s Fabulous Formula: Cures

Many Mathematical Ills [9]. Budding electrical engineers would benefit from reading them as

might budding physicists.

Patrick Honner has written an engaging and easy-to-read article on imaginary numbers in Quanta

Magazine that should be accessible to high school students [10].

I have made reference to Feynman’s lecture [3] in which he says, “So we have created two new

functions in a purely algebraic manner, the cosine and the sine, which belong to algebra, and

only to algebra.” This remarkable unification of algebra and geometry, I have not seen elsewhere.

There are three volumes of the Feynman Lectures on Physics and they are a treat to read and a

treasure to own [11].

Ivan Savov has written a series of irreverently named books on mathematics and physics. Of

these, the one entitled No Bullshit Guide To Linear Algebra [12] is most relevant to this blog. His

style is distinct from other texts, and his fascinating and painstakingly drawn diagrams that

relate different branches of mathematics will help students integrate their knowledge—acquired

piecemeal over the years—into the unitary whole that it really is.

Afterword

This blog started off as something that promised to be short and fizzy, tangy and piquant. But it

soon became a little like hot treacle: too hot to swallow and too sticky to spit out. It transmogrified

into a jumboblog or slog. If you have stuck with me this far, I applaud and thank you.

The thought crossed my mind that I could split this blog into several sub-blogs. But I soon gave up

that idea because the connectedness of the thread will be lost in the segmentation. So, here you

have the whole hog and the whole blog.

Mathematics is like a pastry puff: only the layers never seem to end and neither does the puff! I

needed to cap the well at some point, and matrices seemed as good a place to stop as any. The

pleasures of many other types of multiplication await your future explorations! 😄

As an independent scholar, I work in isolation without the benefits of a university environment or

consultation with peers. So, an error of fact or fancy is all the more likely in what I write. If you

are mathematically inclined, and have spotted any mistakes here, please let me know.

Feedback

Please email me your comments and corrections.
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A PDF version of this article is available for download here:

https://swanlotus.netlify.app/blogs/varieties-of-multiplication.pdf
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