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The unique properties of the numbers zero and one make them mathematically interesting and

indispensable. In this slow-paced stroll though the ideas streaming out of these two numbers, we

uncover well-known as well as relatively obscure facts about them. It is hoped that in the process

we may discover how they cement together disparate areas of Mathematics.

Starting at the beginning

At first, I thought I would skirt around the formal sets of numbers, and concepts like commutativity

and associativity, and keep this blog very informal. But I found that each time I tried that approach,

I would have to furtively sneak in a paragraph here, or a footnote there, to explain these ideas. In

the end, I decided to start at the beginning, and work my way through the natural numbers, the

integers, the rationals, etc., and broach ideas like commutativity and associativity.

Counting

Aeons ago, a shepherd with five sheep might have counted, “one sheep, two sheep, three sheep,

four sheep, and five sheep.” But wait! Since he did not have the names for numbers—nor indeed

the abstract concept of a number—he could not have done that. So, what did he do? Let us

speculate.

Naming sheep

He could have given unique names to each of his five sheep and developed enough familiarity

with them to identify them by name. Then all he needed to do was to check that his entire flock

was home by sundown. But such a method would have become cumbersome and error-prone as

his sheep multiplied.

One-to-one correspondence

The later, and more likely, alternative was to use stones to correspond to sheep. He could have

taken a leather bag and dropped a stone in it—one for each sheep that he owned. He did not need

to learn counting. All he needed to do was to establish a one-to-one correspondence1 between

sheep and stone. As long as he had the right number of stones in his bag, he could account for

each one of his sheep.

1One-to-one correspondence is a simple but extremely powerful idea which guided Georg Cantor to develop his
radical but consistent ideas about types of infinity.

https://www.thefreedictionary.com/broach
https://www.encyclopedia.com/science/encyclopedias-almanacs-transcripts-and-maps/one-one-correspondence
https://www.britannica.com/science/one-to-one-correspondence
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The Latin word for stone is calculus, and from the stone has come the whole science of calculation.

Measurement

When we count, as with sheep, where do we start? We start with one. We do not start with zero,

because we cannot point to any sheep or other object and say “zero”.

Nevertheless, zero has fundamental importance when we startmeasuring. When the petrol tank

in a car is empty, we can fill it up and measure the volume of petrol for which we have to pay.

When we count, we start with 1.

When we measure, we start with 0.

Sets of numbers

Although Mathematics has rigorous foundations, at the very bottom, its notions are not defined

explicitly. One such notion is that of a set, which is loosely defined as a collection of objects that

can either be enumerated or described clearly. The sets of numbers we will deal with have names,

symbols, and definitions as shown below.

Table 1: Sets of numbers

Name Symbol Definition

Natural numbers ℕ {1, 2, 3, 4, ...}
Integers ℤ {..., −3, −2, −1, 0, 1, 2, 3, ...}
Rational numbers ℚ {𝑥 ∶ 𝑥 = 𝑝

𝑞
where 𝑝, 𝑞 ∈ ℤ and 𝑞 ≠ 0}

Irrational numbers {The numbers which are not rational}

Real numbers ℝ {The rationals and the irrationals}

Complex numbers ℂ {𝑎 + 𝑖𝑏 ∶ 𝑎, 𝑏 ∈ ℝ and 𝑖2 = −1}

While it is premature to talk about these sets and their peculiarities in this blog, it is worth making

some points about them.

1. The symbols in the second column are called blackboard bold letters.

2. A set is traditionally enclosed in a pair of braces: {}.

3. Zero is neither positive nor negative. It is simply its unique self. As a set on its own, zero is

often denoted {0}.

4. The numbers we use for counting, starting from 1, and never ending, are—naurally

enough—called the natural numbers, denoted ℕ. There is no agreement on whether or not

to include zero as a member of ℕ. I have chosen not to, because we start counting with one.

5. The integers are namedℤ after theGermanwordZahlenwhich stands for “numbers” (singular

Zahl). The integers include positive and negative whole numbers as well as zero.
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6. The rational numbers are so named because they are really ratios of whole numbers with

the proviso that the denominator cannot be zero. The symbol ℚ is used because it denotes

quotient—the result of division.

7. There is no symbol for the irrationals, which are simply defined as numbers which are not

rational. In fact, the set of irrationals may be shown, using set notation only indirectly as

ℝ ∖ ℚ, which means the set of real numbers, excluding the rational numbers.

8. The real numbers, with symbol ℝ for real, are glibly described as the union of the rational

numbers and the irrational numbers2 [1].

9. The complex numbers incorporate a non-real entity, called 𝑖 the imaginary unit, which is

defined as 𝑖2 = −1. Since every real number when squared is greater than or equal to zero,

this 𝑖 is not a real number, and therefore demands its own symbol, arithmetic, and set, ℂ.

Abstract Algebra

In the nineteenth century, mathematicians contemplated the then extant mathematical systems

and recognized certain commonalities. Whether it was arithmetic or geometry, or some other

branch of mathematics, they were able to distil certain underlying principles behind the common

practices of mathematics. By systematizing and classifying what they observed, they were able to

invent names for the classes of objects they discerned, along with their properties. Thus was born

abstract algebra. The ideas of commutativity, associativity, the additive and multiplicative identit-

ies, and the additive and multiplicative inverses were born from this exercise in classification. If

you wish to know more, I strongly recommend this short video on abstract algebra to whet your

appetite.

The Four Arithmetic Operations

Each of the four basic arithmetic operations–addition, multiplication, subtraction, division—are

binary operations and may only be performed between two numbers. The ability to add multiple

numbers—as in determining the total sum to be paid at the checkout counter while shopping—is

made possible by the commutativity and associativity of addition, which also applies to multiplic-

ation. Subtraction and division are neither commutative nor associative.3

Commutativity and Associativity

Let us add three numbers, 2, 3, and 5. It is common to write this as 2 + 3 + 5 = 10. The sum 10 is
correct, but its correctness is derived from the commutativity and associativity of addition.

In commutativity, we have

2 + 3 = 3 + 2.

The order of the two operands may be interchanged.

2Richard Dedekind with his Schnitt or cut, showed that the rationals and irrationals compriseℝ, but that is a story
for another day and another blog.

3For a start, subtraction is not commutative: 3 − 2 = 1 ≠ −1 = 2 − 3.
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In associativity, we have three operands. We use parentheses to denote the operation we perform

first. Associativity means that it does not matter which pair we add initially:

(2 + 3) + 5 = 2 + (3 + 5).

Together, commutativity and associativity allow us to be casual about the order in which we add

several numbers.

Multiplication is repeated addition. It is thus both commutative and associative. Figure 1 gives a

geometric perspective of multiplication.

Figure 1: The products 4 × 3 and 3 × 4 amount to repeated additions and yield the same result of
12.

Talking about commutativity and associativity might seem like overkill for the addition and

multiplication of real numbers. But, identifying these properties is a useful insight, as the more

sophisticated mathematical objects we will encounter later may not obey either or both properties.

The additive and multiplicative identity elements in ℝ

When zero is added to any real number, 𝑎, we get the original number 𝑎 back as the sum:

𝑎 + 0 = 0 + 𝑎 = 𝑎. (1)

We call 0 the additive identity for ℝ.

Likewise, when we multiply 𝑎 by 1, the original number is returned as the product:

𝑎 × 1 = 1 × 𝑎 = 𝑎 (2)

The number 1 is called themultiplicative identity in ℝ.

Zero and one enjoy their coign of vantage as the unique additive and multiplicative identities

respectively for the real numbers in ℝ. But are their roles generalizable to cover a larger variety
of mathematical objects?
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Mathematics as a discipline tends to generalize and extend simple ideas to increasing levels of

complexity, while at the same time maintaining consistency in definition and behaviour across

these disparate domains. The additive and multiplicative identities may be so generalized, where

applicable.

Varieties of additive and multiplicative identity elements

The zero of the complex numbers is 0 + 𝑖(0) = 0 as well. And adding it to any complex number

returns the original complex number.

Polynomials are expressions like 𝑥2 + 3𝑥 + 1 where 𝑥 is some real or complex variable. The zero

polynomial is simply the constant polynomial 𝑃(𝑥) = 0, and adding it to any polynomial again

gives us back the original polynomial.

A matrix is a rectangular array of numbers, treated as a single unit mathematically. I facetiously

call matrices numbers in teabags. Operations on matrices follow their own rules, but for addition,

they are intuitively apparent.

Let us consider an arbitrary 2 × 2 square matrix like [
𝑎 𝑏
𝑐 𝑑

]. It has two horizontal rows and two

vertical columns, and therefore 4 elements. The additive identity for this matrix is a 2 × 2 square
matrix, all of whose entries are zero:

[
𝑎 𝑏
𝑐 𝑑

] + [
0 0
0 0

] = [
𝑎 𝑏
𝑐 𝑑

] = [
0 0
0 0

] + [
𝑎 𝑏
𝑐 𝑑

] (3)

The matrix [
1 0
0 1

] is themultiplicative identity for matrix multiplication for 2 × 2matrices.4 Note

that its elements are solely ones and zeroes, with ones on the principal-diagonal from top left to

bottom right.

[
𝑎 𝑏
𝑐 𝑑

] [
1 0
0 1

] = [
𝑎 𝑏
𝑐 𝑑

] = [
1 0
0 1

] [
𝑎 𝑏
𝑐 𝑑

] (4)

This is a simple example of how the seed ideas of the additive and multiplicative identities, sown

far and wide, germinate into shoots that are surprisingly similar to the original ones. The numbers

0 and 1 do indeed rule the roost for the simple reason that the original object remains unchanged

under the respective operation. Obviously, the identity matrices will change with the matrix sizes,

but the principles remain the same.

4The rules of matrix multiplication are a little involved and will not detain us here. The interested reader is
referred to another blog of mine for details.
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The additive inverse in ℤ, ℚ, and ℝ

The negative integers arose from subtractions like (3 − 5), whose result was not a positive integer,

and therefore lay outside the confines of ℕ. The negative numbers were introduced to rectify this

deficit. The sets ℤ, ℚ, and and ℝ all contain negative numbers, and can therefore lay claim to an

additive inverse. Every integer or real number 𝑎 has an additive inverse, 𝑎′ such that:

𝑎 + 𝑎′ = 𝑎′ + 𝑎 = 0.

Any guesses as to what 𝑎′ is? It is the number 𝑎 prefixed with a negative sign and written as −𝑎,
i.e., 𝑎′ = −𝑎. It is noteworthy, that when we subtract any real number from itself, we get zero, by

the property of the additive inverse:

𝑎 − 𝑎 = 𝑎 + (−𝑎) = 0 = (−𝑎) + 𝑎. (5)

If you have heard of matter and antimatter annihilating each other in real life or Science Fiction

[2], you can metaphorically think of 𝑎 and −𝑎 as one such pair, giving rise not to energy, but to

zero.😉

The multiplicative inverse in ℤ, ℚ, and ℝ

Suppose we ask the question, “If we have an arbitrary number 𝑎, what number should it be

multiplied by to get 1?” Let us denote this number by 𝑎″. Then, we have:

𝑎 × 𝑎″ = 𝑎″ × 𝑎 = 1 (6)

If you know how to solve simple equations, you would suggest that we divide Equation (6) by 𝑎 on

both sides, like so:

𝑎 × 𝑎″ = 1; divide both sides by 𝑎

𝑎″ = 1
𝑎.

(7)

The number
1
𝑎
is called the reciprocal of 𝑎 and it is the multiplicative inverse of 𝑎. But there is one

important restriction: 𝑎 ≠ 0. See Why is division by zero disallowed?

The rational numbers ℚ arose to accommodate the results of division. Note the hierarchy ℕ ⊂
ℤ ⊂ ℚ ⊂ ℝ where the symbol ⊂may be spoken as “is a subset of” or “is contained in”.

The Arithmetic Four Revisited

Addition

If we start with 0 and add 1 to it, we get 1. If we add 1 to that we get 2. In this fashion, all the natural
numbers may be generated successively by adding 1. The next number is called the successor.

Even if we did not start with 0, but started with 1 instead, we can still generate the entire set ℕ by

adding 1 successively.
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This method shows that there is no largest natural number. If there were such a number, say 𝑝,
we could always add one to it and show the assumption to be false, since (𝑝 + 1) > 𝑝. In this

sense, the number 1 helps us to understand countable infinity.

Subtraction

Subtracting zero from a number leaves it unchanged: 𝑎 − 0 = 𝑎.

By convention, when a sign is not prefixed to a number, we assume it to be positive. If a negative

sign is prefixed to a number, it is a negative number. This is indicated by a pair of parentheses—sur-

rounding the number and its sign—in expressions. When the number is featured alone, these

parentheses are dropped.

With signed numbers, from ℤ, ℚ, or ℝ, we may convert any subtraction into an addition thus:

3 − 5 = −2 = 3 + (−5) = (−5) + 3. (8)

And those additions would still be commutative. This does not mean that subtraction has suddenly

become commutative; it has not. It simply means that subtraction can be morphed into the

(commutative) addition of signed numbers.

Multiplication

Multiplying any number 𝑎 by zero yields zero: 𝑎 × 0 = 0 × 𝑎 = 0. This might be a little difficult to

grasp. To see why this is the case, let us be a little sneaky and write zero as (𝑝 + (−𝑝)), for some

𝑝 ∈ ℝ, because
(𝑝 + (−𝑝)) = 𝑝 − 𝑝 = 0.

Then, we may write, for arbitrary 𝑎 ∈ ℝ,

𝑎 × 0 = 𝑎 × (𝑝 + (−𝑝))
= 𝑎 × 𝑝 + 𝑎 × (−𝑝)
= 𝑎𝑝 − 𝑎𝑝
= 0.

(9)

Here, I have applied the rule that the product of a positive and a negative number is negative. I

have also silently invoked the distributivity of multiplication over addition.

Zero was a problematic number that had been introduced into Europe from India via the Arabs.

Can you imagine the effort that must have gone into understanding and justifying that multiplica-

tion of any number by zero yielded zero? Zero, one, and infinity are a daunting triad. Mastering

them takes time, practice, and familiarity, and stretches both human logic and imagination.

Multiplying a number by 1 is comparatively simpler: it leaves the original number unchanged.

The number 1 is themultiplicative identity element for the real numbers. So, 5 × 1 = 1 × 5 = 5.

Multiplying 𝑎 by −1 yields the additive inverse of 𝑎, namely −𝑎.

Copyright © 2006–2024, R (Chandra) Chandrasekhar 7

https://mathinsight.org/definition/countably_infinite
http://www.mathematicsdictionary.com/english/vmd/full/d/multiplicationoveraddition.htm


The Two Most Important Numbers: Zero and One

Division

If multiplication can be thought of as repeated addition, division can equally be thought of as

repeated subtraction. Dividing 6 by 2may be understood as “How many times can we subtract 2
from 6 before we hit zero?” Stated a little more mathematically, 6 ÷ 2 = 3, and the steps are:

6 − 2 = 4 First lot of two

4 − 2 = 2 Second lot of two

2 − 2 = 0 Third lot of two

The result or quotient is 3because our subtraction algorithm terminated in 3 stepswith a remainder

of 0. Because division is the inverse of multiplication, we can also understand the result as the

number bywhichwemustmultiply the divisor 2 to obtain the dividend 6. In this case, the remainder

is zero, to better illustrate what is happening.

If the division gives rise to a remainder, we stop when we get a remainder that is less than the

divisor. For example, with 7 ÷ 2, we get:

7 − 2 = 5 First lot of two

5 − 2 = 3 Second lot of two

3 − 2 = 1 Third lot of two

That last number 1 is the remainder and the number of steps before stopping is still the quotient,

which is again 3.

Just as subtraction may be thought of as the addition of signed numbers, so also may division be

thought of as the multiplication by reciprocals. If some real 𝑎 is divided by another real 𝑏 ≠ 0, we

may write this as 𝑎 ÷ 𝑏 or equivalently, we may also express it as 𝑎 × 1
𝑏
= 1

𝑏
× 𝑎 = 𝑎

𝑏
.

Why is division by zero disallowed?

Now, what happens if we divide by zero? To keep matters simple, let us keep the same dividend,

namely 6. If we subtract 0 from 6, we end up with 6. Subtracting another 0 from this 6 still leaves

us with 6. By now, you should have cottoned on to the fact that we are not making any progress.

6 − 0 = 6 First lot of zero

6 − 0 = 6 Second lot of zero

6 − 0 = 6 Third lot of zero

⋯ ⋯

Each time we subtract zero, the remainder equals the dividend, and we end up where we started.

Thus, this process never ends, and therefore cannot be an algorithm, which by definition, must

terminate in a finite number of steps. Sometimes, this is stated as “dividing by zero gives infinity,”

which is a mathematically less acceptable, but intuitively more friendly, way of stating that it is

an unending process. This is why division by zero is not permitted.
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The most basic justification for not permitting division by zero is given here. With increasing

mathematical sophistication, increasingly recondite reasoning may be given for why division by

zero is not permitted. For example, any number multiplied by zero gives zero. Therefore, dividing

by zero will give us any number, which is a non-unique answer. Allowing such an operation will

destroy the predictability on which mathematical operations are built.

Exponentiation

Exponentiation may also be called raising (something) to a power. It is a short form for repeated

multiplication by the same number. For example, if we multiply 5 by itself three times, we write it

so:

5 × 5 × 5 = 51 × 51 × 51 = 5(1+1+1) = 53 = 125 (10)

The number 5 is called the base and the power 3 is called the exponent. Note that 51 = 5 and the

exponent 1 is omitted.

The reciprocal of an arbitrary non-zero real number 𝑎 is
1
𝑎
. The product of the two is 1. So, 𝑎 and

1
𝑎
are multiplicative inverses. Written with an exponent,

1
𝑎 = 𝑎−1.

Continuing with the number 5 in our example, its reciprocal is
1
5
= 5−1. What do we get if we

multiply 5 by its reciprocal? We already know the answer to be 1. Let us do the multiplication

using exponents:

5 × 1
5 = 1 = 51 × 5−1 = 51+(−1) = 50. (11)

The astounding conclusion from Equation (11) is that 5 raised to the exponent zero is 1. I will

hand-wave here and assert that this will apply to any base 𝑎 ∈ ℝ, i.e., 𝑎0 = 1 for 𝑎 ∈ ℝ: something

that will be understood better after we encounter logarithms in this series of blogs or elsewhere.

The consequence is that the logarithm of 1 to any base 𝑏 is 0:

log𝑏 1 = 0. (12)

Equation (12) is yet anothermemorable equation linking 1 and 0. When the domain ofmathematics

expands to take on new numbers, new objects, and new notations, the need for consistency with

the existing body of mathematics gives us pearls such as Equation (12).

From the foregoing, note that

𝑎 × 1
𝑎 = 𝑎 × 𝑎−1 = 𝑎0 = 1.

Constants in polynomials may be written using 𝑥0 in place of one. For example,

2𝑥2 + 3𝑥 + 2 = 2𝑥2 + 3𝑥1 + 2𝑥0. (13)
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Equation (13) shows how consistent the terms in a polynomial are. They are all powers of 𝑥written

in descending fashion, although by convention, certain terms are understood and therefore

implicit. The omission of the index in the term 3𝑥1 and the 𝑥0 in the term 2𝑥0 could cause disquiet
in the newcomer to polynomials. It is best to dispel that unease right away, by understanding that

it is a mere convention that has led to this departure from absolute consistency.

In the succeeding sections, we take a look a some lesser known aspects of zero and one.

The shy one

The number one is often implicit in mathematical notation. While wemay write 2𝑥 to denote 2×𝑥,
or two multiplied by 𝑥, we do not write 1𝑥, even if it is literally correct, because of convention. In

instances like this, the number one is implicit, and assumed to be understood by those who know.

If you happen to be one of those not in the know, here’s your chance to join the other side.

When we write a fraction as
3
4
we mean the decimal 0.75 and matters are clear. But all whole

numbers are also fractions with the denominator being 1. So, the fraction 3
1
is rarely written in that

form, even if syntactically correct, because usage dictates that whole numbers are written to stand

on their own, as 3, in this case. Again, the 1 in the denominator is assumed to be unobtrusively

present: out of sight but not out of mind.

One consequence of this is that ℤ ⊂ ℚ which, in plain English, reads as “the set of integers is a

(proper) subset of the set of rationals”.

When we write 42, spoken out as “four squared” we mean the number obtained by multiplying

4 by itself. This nomenclature arose because, if 4 was associated with the length of, say, a piece

of string, the number “four squared” was used to denote the area of a square that had a side of

length 4. So, 42 = 4 × 4 = 16.

Likewise, the expression 73 or “seven cubed” denoted the volume of a cube of side 7. Beyond the

third dimension, this naming scheme faded out, because we cannot percieve dimensions higher

than three.

Therefore, 64 is spoken as “six raised to the fourth (power)” or “six to the four”. As we have

seen before, in such statements, the number 6 is called the base and the number 4 is called the

exponent.

We have already seen that 51 = 5 and, while that is perfectly correct, convention intrudes to say

that we write it simply as 5. Any number raised to the power of 1 equals itself.

The notation making 1 implicit in these scenarios reduces clutter and simplifies notation. The ab-

sence of the implicit 1might trouble the heart of the sincere young mathematician, but familiarity

with these conventions will make for comfort and confidence in using them.

The interval [0, 1]

If the reals are thought of as a line, the segment from 0 to 1 can serve as a microcosm of all the

real numbers. It is as densely populated with rational and irrational numbers as the entire real

number line. This almost holographic property is a consequence of what “infinity” is, and is again

a concept that might be difficult to accept, let alone understand.
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In any case, our interest in the closed interval [0, 1] is for a different purpose now. The numbers

in ℚ and ℝ have an interesting property when they lie in the interval [0, 1]. If we raise such

numbers to integer powers, they become progressively smaller in value. This may easily be seen

using the rules of exponentiation, or by successive multiplication.

Let 𝑎 = 0.9. Then the successive integral powers of 𝑎 are as tabulated below:

𝑎 0.91 0.9
𝑎2 0.92 0.81
𝑎3 0.93 0.729
𝑎4 0.94 0.6561
𝑎5 0.95 0.59049

It is clear that the powers of 𝑎𝑛 diminish with increasing 𝑛 when 𝑎 ∈ [0, 1]. This is peculiar to
the interval [0, 1], because when 𝑎 > 1, the powers of 𝑎𝑛 increase with increasing 𝑛, as tabulated
below for 𝑎 = 1.1.

𝑎 1.11 1.1
𝑎2 1.12 1.21
𝑎3 1.13 1.331
𝑎4 1.14 1.4641
𝑎5 1.15 1.61051

The pivot at 𝑎 = 1 is rock steady because 1𝑛 = 1 for all 𝑛 ∈ ℕ. When 𝑎 is 10% less, we see a

steady decline in 𝑎𝑛 as 𝑛 increases. But when 𝑎 is 10% more than 1, we see a growth in 𝑎𝑛 and 𝑛
increases. This wondrous behaviour contributes to the magic of the number 1.

Figure 2 shows graphs of 𝑥𝑛 for 𝑥 ∈ [0, 1] and 𝑛 ∈ {0, 1, 2, 4, 8, 16, 32, 64, 128, 512}. As 𝑛 increases

and 𝑥 approaches 1, the graphs exhibit an almost perpendicular change in direction like a laterally

inverted 𝐿. I find this behavior fascinating, and it explains why geometric series converge when

the common ratio |𝑟| < 1.

Rotation on the complex plane

The two-dimensional plane may be pressed into service in a variety of contexts to serve different

ends. One such use is the Argand diagram in which the 𝑥 axis represents the real part and the 𝑦
axis the imaginary part of a complex number, 𝑧 = 𝑥 + 𝑖𝑦; 𝑥, 𝑦 ∈ ℝ; 𝑧 ∈ ℂ.

Consider the point 𝑃 in Figure 3 with coordinates (1, 0) which denotes the real number 1 in ℂ. 𝑃
has no imaginary component. If we multiply it by 𝑖, we get to 𝑄, (0, 1), which is purely imaginary

and has no real component. Another multiplication by 𝑖 sends 𝑄 to 𝑅, which is (−1, 0), a purely
real number. A third multiplication transforms 𝑅 into 𝑆 at (0, -1) which is purely imaginary. A

fourth and final multiplication maps 𝑆 back to 𝑃.

The upshot of this is that each multiplication by 𝑖 rotates the point 𝑃 counterclockwise by
𝜋
2
or 90°.

Four consecutive multiplications restore the rotated point to itself. The multiplicative identity

element is therefore

𝑖4 = (𝑖2)(𝑖2) = (−1)(−1) = 1

Copyright © 2006–2024, R (Chandra) Chandrasekhar 11

https://mathworld.wolfram.com/ClosedInterval.html
https://mathworld.wolfram.com/ArgandDiagram.html


The Two Most Important Numbers: Zero and One

Figure 2: Graphs of 𝑦 = 𝑥𝑛 for 𝑥 ∈ [0, 1] and 𝑛 ∈ {0, 1, 2, 4, 8, 16, 32, 64, 128, 512}. Note that all
curves pass through (1, 1).
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Figure 3: Successive multiplication by 𝑖 as a rotation in ℂ. See the text for the full explanation.

Copyright © 2006–2024, R (Chandra) Chandrasekhar 13
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as would be expected. The multiplicative inverses for the four elements 1, 𝑖, −1, −𝑖 are 1, −𝑖, −1, 𝑖
respectively. Observe that:

1. A multiplication by 𝑖 corresponds to a 𝜋
2
counterclockwise rotation in ℂ.

2. Four consecutive rotations restore the point to its original position.

3. The multiplicative identity element is 𝑖4 = 1 as would be expected.

4. The multiplicative inverse for each of the four elements is also one of the four numbers

1, 𝑖, −1, −𝑖.
5. The starting point and the results of all rotations are points on the unit circle.

These properties are at the heart of Group Theory which is the mathematical study of symmetries.

The particular group we are looking at is called the 𝐶4 group because of its fourfold symmetry.

It is customary to enumerate the transformations in a group by displaying them in a table, called

a Cayley table, not unlike a multiplication table. Such a table for the 𝐶4 group is shown in Figure 3

as well as below:
𝐶4 1 𝑖 −1 −𝑖
1 1 𝑖 −1 −𝑖
𝑖 𝑖 −1 −𝑖 1

−1 −1 −𝑖 1 𝑖
−𝑖 −𝑖 1 𝑖 −1

Some groupsmaynot be commutativewith respect tomultiplication. So, the order ofmultiplication

is “the row element multiplied by the column element”. The group 𝐶4 is a commutative or Abelian

group under multiplication, so the order of multiplication may be swapped. Moreover, because

all its elements may be generated from a single element, e.g., 𝑖, as shown in the second quadrant

of Figure 3, it is also called a cyclic group.

The four numbers 1, 𝑖, −1, −𝑖 are also known as the fourth roots of unity [3]. These numbers

satisfy the polynomial equation

𝑧4 = 1. (14)

Indeed, the study of groups was motivated by mathematical questions arising from the study of

polynomials, the study of integers usingmodular arithmetic and the study of geometric symmetries.

Group theory has enabled mathematicians to distil similarities from disparate domains and

thereby produce an integrated picture of their discipline. Watch this video on cyclic groups to

learn more about them.

Sequences and Series

An ordered procession of numbers is called a sequence [4,5].5 Repetitions are allowed, but the

order matters. The natural numbers form the sequence (1, 2, 3, 4, 5,…). Note that the elements of

the sequence are enclosed in parentheses, (). There is an entire website devoted to sequences,

called the The On-Line Encyclopedia of Integer Sequences® (OEIS®).

5The general definition replaces numbers withmathematical objects but the former will suffice for our limited
purpose here.
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Fibonacci sequence

The Fibonacci sequence is a simple but profound sequence that is reflected in much of Nature.

We start at the beginning with 0 and 1:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377,…

We add them to get the next number, which is 1 again. Adding that to the previous number, we

obtain 2. The algorithm is to add the two previous numbers to get the current one:

𝐹1 = 0
𝐹2 = 1
𝐹3 = 𝐹2 + 𝐹1 = 1
𝐹4 = 𝐹3 + 𝐹2 = 1 + 1 = 2
𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 for 𝑛 ∈ ℕ and 𝑛 > 2

(15)

We have a recurrence relation in Equation (15) for the 𝑛th Fibonacci term.6 And the grist for the

Fibonacci sequence mill are the two numbers, 0 and 1!

Pascal’s triangle is another sequence that may be built from adjacent sums in a number pattern.

It is related to the binomial coefficients which play a vital role in probability, combinatorics, and

calculus. I intend to look at number patterns like the Fibonacci sequence and Pascal’s triangle in

another blog.

Series

A series is the (progressive) sum of an infinite sequence [6,7].

The sum of all the natural numbers, starting with 1 and going on without end, is written as

∞
∑
𝑛=1

𝑛 = 1 + 2 + 3 + 4 + ...

It is tacitly understood that the numbers are integers from ℕ. The sum is unbounded or infinite.

However, certain infinite sums converge to a specific number or limit, as our next example

demonstrates.

Consider, for example the sequence that we encounter in Zeno’s Dichotomy paradox:

1, 1
2
, 1
4
, 1
8
, 1
16
, .... Is there a sum to infinity, and if so, what is it? The series we are after is

called a geometric series or a geometric progression and the sum to infinity may be written as:

∞
∑
𝑛=0

1
2𝑛 = 1 + 1

2 +
1
4 +

1
8 +

1
16 + ... (16)

6The 𝑛th Fibonacci term may be expressed in closed form without recursion using Binet’s Formula but we will not
go into that here
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Mark that the first term is
1
20
= 1

1
= 1. Because the successive terms in this series get smaller

and smaller, there is hope that it could converge to a finite limit. Using the standard notation for

geometric series, we have the first term 𝑎 = 1. The common ratio 𝑟 is the ratio of the succeeding

term divided by the current term. Looking at the first two terms, we have 𝑟 =
1
2
1
= 1

2
.

If the absolute value of the common ratio 𝑟 is less than 1, i.e.,

|𝑟| < 1 (17)

then the infinite series will converge to a finite limit. If you need to be convinced about the

condition in Equation (17), take a look at Figure 2 and you will hopefully be persuaded! Again,

note the vital place enjoyed by 0 and 1 in the game called mathematics.😉

So, what is the sum to infinity? The time-honoured formula is
𝑎
1−𝑟

, which in our case, works out

to: ∞
∑
0

1
2𝑛 = 1

1 − 1
2

= 1
1
2

= 2.

The problem with the paradoxes of old was that they did not allow for the fact that infinite sums

could sometimes be finite. And that is a problem that mathematicians have been grappling with

ever since the calculus was invented. But that again, is a blog for another day and another

occasion.

For now, I hope that the uniqueness, utility, and ubiquity of 0 and 1 have convinced you of their

indispensability in the domain of Mathematics.

Feedback

Please email me your comments and corrections.

A PDF version of this article is available for download here:

https://swanlotus.netlify.app/blogs/the-two-most-important-numbers.pdf
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