
A Foray into Rust: Euler One

R (Chandra) Chandrasekhar

2021-07-31 | 2023-11-26

As a programmer, I am long in the tooth. I started out with FORTRAN, went on to Forth, and settled

with C through three decades or more. Later, it was MATLAB and Octave for high level computing.

For scripting, I used Perl or bash. Python, the current darling of programmers, is an unknown

bourne to me.

So why did I choose Rust as the new programming language to learn? Rust is the emerging

programming language, developed at Mozilla [1]. It has been consistently voted the most loved

programming language in Stack Overflow Developer Surveys [2]. End-users, such as scientists,

are turning to Rust when Python has proven inadequate for some reason [3]. And corporate users

include Dropbox, Mozilla, Microsoft, npm, etc. [4].

But there are other, more personal, reasons as well. My previous bet on the futurewas on Haskell.
I have tried many times to learn it, almost always giving up in despair, because I was put off by

the unfamiliar notation, and its corpus of arcana, like monads, touted by the cognoscenti, as the

way to tell the men from the boys. Enough about the why. Now for the how.

I decided to start learning Rust by solving Project Euler Problem One—henceforth called Euler

One, the problem, or the question—using Rust. This is a chronicle of my first efforts, including false

starts, errors, backtracks, etc.

Project Euler Problem One

The statement of the problem is simple and pellucid:

Multiples of 3 or 5

If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The

sum of these multiples is 23.

Find the sum of all the multiples of 3 or 5 below 1000. [Emphasis is mine]

Algorithm for problem solving

The algorithm for problem solving is [5]:

1. Read the question carefully.

2. Understand the question correctly.

3. Answer the question precisely.

https://fortran-lang.org/
https://www.forth.com/
https://www.iso.org/standard/74528.html
https://www.mathworks.com/
https://www.gnu.org/software/octave/index
https://www.perl.org/
https://www.gnu.org/software/bash/
https://www.python.org/
http://www.finedictionary.com/bourn.html
http://www.finedictionary.com/bourn.html
https://www.rust-lang.org/
https://research.mozilla.org/rust/
https://insights.stackoverflow.com/survey/2020#most-loved-dreaded-and-wanted
https://www.nature.com/articles/d41586-020-03382-2
https://serokell.io/blog/rust-companies
https://www.dropbox.com/
https://www.youtube.com/watch?v=NQBVUjdkLAA
https://www.npmjs.com/
https://www.haskell.org/
https://projecteuler.net/problem=1
https://projecteuler.net/problem=1

A Foray into Rust: Euler One

The problem asks for all the multiples of 3 or 5 below 1000. I have emphasized the words that

require careful understanding and thought. Care at this stage of acquaintance with the problem

staves off many a careless mistake by nipping it in the bud.

Parsing the question

The word “or”

I have emphasized three words in the problem definition: all, or, and below. The first is obvious.

Let us look at the other two.

The phrase “multiples of 3 or 5” may be interpreted in two ways. If we think of it as an inclusive

or, then it means “multiples of 3, multiples of 5, and multiples of both 3 and 5”.

If we think of it as an exclusive or, then it means “multiples of 3, multiples of 5, but not multiples

of both 3 and 5”.

Since the qualification of “but not both” is absent from the rubric, we will assume an inclusive or,

i.e., the first interpretation.

The word “below”

The word “below” introduces the mathematical relation < as opposed to ≤. This means all

multiples of three or five that are less than 1000, excluding 1000.

The time spent in looking at the question through a magnifying glass is time well spent, because it

forces us to assume the mindset of the author who carefully crafted the question. We thereby

become acquainted with the possibilities for pitfalls and potholes that could otherwise upend our

efforts.

Initial thoughts

The multiples of 3 are those numbers, which when divided by 3, leave a remainder of zero.

Likewise the numbers which leave a remainder of zero when divided by 5 are multiples of 5. This
implies integer arithmetic, and that in turn, could mean we have to declare the type of numbers

we are using. Floating point division will never do for our problem. But anyway, division is

problematic; witness the caveat that the divisor may not be zero in the field of rational numbers,

ℚ.

In terms of division, the % operator for integer division from other programming languages

suggests itself. But is division the most natural way to identify the multiples of a number? Should

it not be multiplication instead? It is time to start thinking with a beginner’s mind.

We also need a structure like an array or list where numbers may be appended or inserted until

the stopping condition is reached. If we keep a running total, though, we do not need anything

else except three receptacles: one for the sum of multiples of three, 𝑠3, another for the sum of

multiples of five, 𝑠5, and one more for the sum of multiples of 15, 𝑠15. Let us try the latter option
first, and leave arrays for a later refinement.

Copyright © 2006–2023, R (Chandra) Chandrasekhar 2

https://www.powerthesaurus.org/upend/synonyms
https://en.wikipedia.org/wiki/Shoshin

A Foray into Rust: Euler One

Setting the bounds

We know that 1000 ÷ 3 = 333with a remainder of 1. The largest multiple of 3 less than 1000 is
therefore, 333 × 3 = 999. The number of multiples of 3, 𝑛3, we will be dealing with is thus 333.

Likewise, 1000 ÷ 5 = 200with a remainder of 0. Since 1000 is a multiple of 5, we need the next

lower multiple of 5 below 1000, which is $1000 - 5 = 995. Now, 995 ÷ 5 = 199; so 𝑛5 = 199.

With 15, we have 1000 ÷ 15 = 66with a remainder of 10. So, 66 × 15 = 990 is the upper bound,
and the number of multiples 𝑛15 is 66.

Because 15 is a multiple of both 3 and 5, we need to ensure that we do not add its multiples twice

in our summations.

Venn diagram representation

Viewing a problem pictorially often helps us to grasp it better. In this case, it is not a graph but a

Venn diagram that helps. In Figure 1, we use circles A and B to represent the sets of multiples of 3
and 5 respectively. The two circles overlap because there exist numbers that are multiples of both

3 and 5: these are the multiples of 15.

Figure 1: Venn diagram relatingmultiples of 3, shown as set𝐴, multiples of 5 as set𝐵, andmultiples
of 15 as their intersection 𝐴 ∩ 𝐵.

We know from set theory that what we are after is 𝐴 ∪ 𝐵 or the union of the sets 𝐴 and 𝐵. Also,
the number of elements in the sets are related by

𝑛(𝐴 ∪ 𝐵) = 𝑛(𝐴) + 𝑛(𝐵) − 𝑛(𝐴 ∩ 𝐵). (1)

The expression 𝑛(𝐴), for example, denotes the number of (unique) elements in the set 𝐴. Equa-
tion (1) gives us a convenient way of counting the multiples of 3 or 5, without double counting the

multiples of 15.

Copyright © 2006–2023, R (Chandra) Chandrasekhar 3

https://www.lucidchart.com/pages/tutorial/venn-diagram
https://en.wikipedia.org/wiki/Set_theory

A Foray into Rust: Euler One

Algorithm

The most direct algorithm to solve the problem in pseudocode is:

1. Define 𝑠3 as the cumulative sum of the multiples of 3, and initialize it to 0.

2. Define 𝑠5 as the cumulative sum of the multiples of 5, and initialize it to 0.

3. Define 𝑠15 as the cumulative sum of multiples of 15, and initialize it to 0.

4. Loop through the natural numbers ℕ from 1 to 333, compute the multiples of 3, one at a
time, and add it to 𝑠3.

5. Loop through the natural numbers ℕ from 1 to 199, compute the multiples of 5, one at a
time, and add it to 𝑠5.

6. Loop through the natural numbers ℕ from 1 to 66, compute the multiples of 15, one at a
time, and add it to 𝑠15.

7. Evaluate (𝑠3+𝑠5−𝑠15) and present it as the desired result. See Equation (1) for an explanation.

Pseudocode

I envisage three independent for loops to achieve this. The pseudocode could read:

s3 = s5 = s15 = 0 # initialize variables

for n in [1:333]
do

s3 = s3 + 3*n
done

for n i [1:199]
do

s5 = s5 + 5*n
done

for n i [1:66]
do

s15 = s15 + 15*n
done

print (s3 + s5 - s15)

We have implicitly assumed that the for loop increment is 1. The mathematical convention for a

closed interval is used above to denote that both the upper and lower limits are inclusive.

Copyright © 2006–2023, R (Chandra) Chandrasekhar 4

https://en.wikipedia.org/wiki/Pseudocode

A Foray into Rust: Euler One

First attempt

Let us barge ahead using the syntax of Rust and see how the above pseudo code fleshes out. It

turns out that Rust supports five types of loop and we need the one with the for flavour, called

the iterator loop.

There is also an example on that web page that is similar to our problem. It uses a for loop, but

the variable holding the sum is initialized using the mut keyword. Let us copy the code fragment

and change it to suit our purposes:

// Attempt Number 1
let mut s3 = 0;
let mut s5 = 0;
let mut s15 = 0;

for n in 1..333 {
s3 += n*3;

}

for n in 1..199 {
s5 += n*5;

}

for n in 1..66 {
s15 += n*15;

}

println(s3 + s5 - s15);

Not surprisingly, the above fragment contains numerous errors and would not compile. So, I

needed to backtrack to see an example of the archetypal “Hello World!” program to get the proper

invocatory syntax. Languages like C and Java come with some baggage that needs to be wrapped

around the core code so that it may be rendered into an executable program. Rust seems to have

borrowed this characteristic from them. Note the use of s3 += n*3; which is shorthand for s3
= s3 + n*3. The += operator is available in Rust, but not always in other languages.

Second attempt

My second attempt at the program, with proper indentation, is now:

// Attempt Number 2
fn main() {

let mut s3 = 0;
let mut s5 = 0;
let mut s15 = 0;

Copyright © 2006–2023, R (Chandra) Chandrasekhar 5

https://doc.rust-lang.org/reference/expressions/loop-expr.html
https://doc.rust-lang.org/std/keyword.mut.html
https://doc.rust-lang.org/book/ch01-02-hello-world.html
https://doc.rust-lang.org/book/ch01-02-hello-world.html

A Foray into Rust: Euler One

for n in 1..333 {
s3 += n*3;

}

for n in 1..199 {
s5 += n*5;

}

for n in 1..66 {
s15 += n*15;

}

println!(”{}”, s3 + s5 - s15);
}

I have wrapped the whole code fragment with a main() function just as in C. Moreover, I have

learned that println! is a macro rather than a function and that it is invoked as shown. This has

already disheartened me a bit because something too much like C or Java—with a lot of clunky

statements for simple actions—is a step in the wrong direction for an easier-to-use programming

language. Let us hope it does not rain pickaxes and shovels when we compile the code!

This time, the code was compiled without a murmur. Upon execution, the answer was 232164. Is
it correct? Or have we tripped somewhere?

Result with Octave

The easiest and laziest way to check the result was to use a naturally vector-based language to

verify the above result. I chose Octave as it is freely available, and I know it somewhat. Because

the natural data structure in Octave is a vector or a matrix, I could type out the whole sequence

using the syntax [start:step:end] and sum it up to get the three sums of multiples. The code

was so easy, that I could write it without reference to paper:

sum([3:3:999]) + sum([5:5:995]) - sum([15:15:990])

and this gave a result of 233168. Ouch! it differs from the result using Rust. I must also say that,

though laconic, Octave got the job done with very little fuss or fanfare. Vectorized code is both

more powerful and simpler to understand and maintain. The best language for someone working

with vectors is one that supports them natively.

We must now make a third, “repair and maintenance” attempt with the rust code.

Troubleshooting

The rust program is so simple that the most likely error must lie with the limits in the for loop.

Indeed, an experienced programmer would have seen it at once.

Programming languages are notoriously inconsistent on two fronts:

Copyright © 2006–2023, R (Chandra) Chandrasekhar 6

A Foray into Rust: Euler One

a. Whether they start their indexing with 0 or with 1; and
b. Whether their index ranges are on closed intervals [𝑎, 𝑏], or semi-closed intervals [𝑎, 𝑏), or
(𝑎, 𝑏], or open intervals (𝑎, 𝑏).

One would have thought that common sense would impel language designers to adopt uniform

conventions on these two issues. Unfortunately the authors of programming languages have

rather fiercely held philosophical notions, and a divide persists. Thus each foray into a new

language must be cautiously done with these two factors in mind.

In our case, we need to hark back to the definition of the .. range operator in Rust. The expression
start..endmeans that the index variable i lies in a semi-closed interval: start <= i < end.
The end parameters in each case need to be increased by one in our program. Our third attempt

is shown below:

Third attempt

// Attempt Number 3
fn main() {

let mut s3 = 0;
let mut s5 = 0;
let mut s15 = 0;

for n in 1..334 {
s3 += n*3;

}

for n in 1..200 {
s5 += n*5;

}

for n in 1..67 {
s15 += n*15;

}

println!(”{}”, s3 + s5 - s15);
}

This again complied incident-free and the result that popped out was 233168. Bingo! It is the
same as what Octave gave us. That is a reassuring feeling. The real arbiter of truth, though, is

mathematics. What does it say?

Copyright © 2006–2023, R (Chandra) Chandrasekhar 7

https://doc.rust-lang.org/reference/expressions/range-expr.html

A Foray into Rust: Euler One

The Gold Standard

We are fortunate that in this case, the mathematics is both simple and well known. We are dealing

with the sums of three arithmetic progressions (AP). The first term in an AP is usually denoted 𝑎
and the common difference is denoted by 𝑑. The number of terms is usually 𝑛. The last term is

𝑎𝑛 = 𝑎 + (𝑛 − 1)𝑑, and the sum to 𝑛 terms is

𝑎 + 𝑎 + 𝑑 + 𝑎 + 2𝑑 + 𝑎 + 3𝑑 +⋯+ 𝑎 + (𝑛 − 1)𝑑 = 𝑛
2 (𝑎 + 𝑎𝑛) (2)

Using this formula, for the multiples of 3, we have 𝑎 = 3, 𝑛 = 333 and 𝑎𝑛 = 999, giving us

𝑠3 =
333
2 (3 + 999) = 166833.

Likewise, for the multiples of 5, we have 𝑎 = 5, 𝑛 = 199 and 𝑎𝑛 = 995, yielding

𝑠5 =
199
2 (5 + 995) = 99500.

Finally, the sum of multiples of 15 is given by

𝑠15 =
66
2 (15 + 990) = 33165.

The required sum, 𝑠 is therefore

𝑠 = 𝑠3 + 𝑠5 − 𝑠15 = 166833 + 99500 − 33165 = 233168.

So, we have indeed got the correct result!

Vectorizing

The single-line Octave program made the solution seem laughably easy. Why? Because the

standard data structure in Octave is a vector or a matrix. In the context of Rust, we may pose

these questions:

1. Does Rust have a ready implementation of vectors that may be called upon?

2. Would such an implementation be faster? Less error prone? Easier to visualize and

troubleshoot?

I had a little peep at the possibilities with Rust and realized that being a multi-paradigm language,

Rust provides many possibilities to accomplish the same task. And the choices available will

overwhelm a Rust-neophyte like me. Moreover, once the simplicity of scalars is left behind, the

knowledge curve with vectors is rather steep. So, vectorizingmust promise returns commensurate

with the learning effort. I will leave vectors in Rust for another day.

FizzBuzz

The FizzBuzz coding problem is a natural successor to EulerOne. The original problem, used in

early school to teach multiplication, is stated for coding below:

Copyright © 2006–2023, R (Chandra) Chandrasekhar 8

https://en.wikipedia.org/wiki/Arithmetic_progression#Sum
https://en.wikipedia.org/wiki/Comparison_of_multi-paradigm_programming_languages
https://leetcode.com/problems/fizz-buzz/

A Foray into Rust: Euler One

For every integer from 1 to 𝑛, print Fizz if it is divisible by 3, Buzz if it is divisible by 5, and
FizzBuzz if it is divisible by 15. Otherwise, do nothing. [For our purposes, we may set an upper

limit as 𝑛 < 1000.]

This is a favourite coding-interview problem because it is simple enough to reveal the thought

processes of the candidate who wrote the program. Note that we are asked to sort the numbers

into four groups.

Vectors and set intersections are the easiest way to achieve this, but Rust presents a steep climb

in knowledge acquisition before even meagre results start trickling in.

With Euler One, we have already computed the sums of multiples of 3, 5, and 15, which are less

than 1000. But we did not retain the multiples themselves as separate entities.

Octave implementation of FizzBuzz

In Octave, the implementation of FizzBuzz is starkly simple. The availability of the set difference

as an operation gives us a ready-made solution as shown below. Of course, I have not printed the

output, but the vectors named fizz, buzz and fizzbuzz contain the numbers whose elements

are associated with these responses.1 This is more a “proof-of-concept” demonstration, rather

than a proper solution, because the logic associating the response with the number is missing.

% FizzBuzz
threes = [3:3:999];
fives = [5:5:995];
fifteens = [15:15:990];
fizz = setdiff (threes, fifteens);
buzz = setdiff (fives, fifteens);
fizzbuzz = fifteens;

Closing thoughts

To learn Rust requires fortitude of mind and heart. It is not for the timid. It is no swimming-pool

language; it plumbs the ocean deeps. Its power must lie in its apparent versatility. I do not feel

any heart-tug to learn it when Ocatve, like Aladdin’s Lamp, is there to fulfil my programming

wishes. But for those who are professional programmers, I think that missing out on Rustmight

be like missing out on the main course in a meal.

Afterword

After I had written this blog, I came across a fascinating blog on Euler One [6].

He has made the very valid point that whenever we are faced with products of a constant 𝑘 with

sums of the first 𝑛 numbers, we may use the formula for the sum of the first 𝑛 numbers in closed

form to give us the required product frugally as 𝑘𝑛(𝑛+1)
2

. In this way, we multiply only twice

instead of 𝑛 times.2

1If a particular number does not reside in any of these three vectors, there is no response.
2That is the power of the distributive law.

Copyright © 2006–2023, R (Chandra) Chandrasekhar 9

https://en.wikipedia.org/wiki/Complement_(set_theory)#Relative_complement
https://iambryanhaney.medium.com/another-unreasonable-deep-dive-into-project-euler-problem-1-51a3a841ad67#:~:text=The%20Problem,0%20modulo%203%20or%205

A Foray into Rust: Euler One

I urge you to read the blog to stretch your mental muscles, while at the same time developing

an appreciation for the beauty of mathematics. Try your own hand at analyzing the seemingly

simple Euler One problem and see whether it gives you insights that you did not have before.

Caveat Lector! or Reader Beware! or Disclaimer

I am learning Rust. What I have written here represents my efforts at learning. The code here is

not mature, idiomatic Rust code and should not be construed as such. Do not take it as an example

of how to code in Rust. Experienced “Rustaceans” who find errors are requested to email me with

their corrections. 😐

Feedback

Please email me your comments and corrections.

A PDF version of this article is available for download here:

https://swanlotus.netlify.app/blogs/rust-euler-one.pdf

References

[1] —. Rust. Retrieved 1 August 2021 from https://research.mozilla.org/rust/

[2] Jake Goulding. 2020. What is Rust and why is it so popular? Retrieved 1 August 2021 from

https://stackoverflow.blog/2020/01/20/what-is-rust-and-why-is-it-so-popular/

[3] Jeffrey M Perkel. 2020. Why scientists are turning to Rust. Despite having a steep learning

curve, the programming language offers speed and safety. Retrieved 1 August 2021 from

https://www.nature.com/articles/d41586-020-03382-2

[4] Gints Dreimanis. 2020. 9 Companies That Use Rust in Production. Retrieved 1 August 2021

from https://serokell.io/blog/rust-companies

[5] R (Chandra) Chandrasekhar. 2023. Secrets of Academic Success. Timeless Principles for

Lifelong Learning. Retrieved 24 November 2023 from https://swanlotus.netlify.app/sas-
manuscript/SAS-partial.pdf

[6] Bryan Haney. 2020. Another Unreasonably Deep Dive into Project Euler Problem 1. Re-

trieved 25 November 2023 from https://iambryanhaney.medium.com/another-unreasonable-
deep-dive-into-project-euler-problem-1-51a3a841ad67#:~:text=The%20Problem,0%20modul
o%203%20or%205

Copyright © 2006–2023, R (Chandra) Chandrasekhar 10

mailto:feedback.swanlotus@gmail.com
mailto:feedback.swanlotus@gmail.com
https://swanlotus.netlify.app/blogs/rust-euler-one.pdf
https://research.mozilla.org/rust/
https://stackoverflow.blog/2020/01/20/what-is-rust-and-why-is-it-so-popular/
https://www.nature.com/articles/d41586-020-03382-2
https://serokell.io/blog/rust-companies
https://swanlotus.netlify.app/sas-manuscript/SAS-partial.pdf
https://swanlotus.netlify.app/sas-manuscript/SAS-partial.pdf
https://iambryanhaney.medium.com/another-unreasonable-deep-dive-into-project-euler-problem-1-51a3a841ad67#:~:text=The%20Problem,0%20modulo%203%20or%205
https://iambryanhaney.medium.com/another-unreasonable-deep-dive-into-project-euler-problem-1-51a3a841ad67#:~:text=The%20Problem,0%20modulo%203%20or%205
https://iambryanhaney.medium.com/another-unreasonable-deep-dive-into-project-euler-problem-1-51a3a841ad67#:~:text=The%20Problem,0%20modulo%203%20or%205

	Project Euler Problem One
	Algorithm for problem solving
	Parsing the question
	The word “or”
	The word “below”

	Initial thoughts
	Setting the bounds
	Venn diagram representation

	Algorithm
	Pseudocode
	First attempt
	Second attempt
	Result with Octave
	Troubleshooting
	Third attempt
	The Gold Standard
	Vectorizing
	FizzBuzz
	Octave implementation of FizzBuzz

	Closing thoughts
	Afterword
	Caveat Lector! or Reader Beware! or Disclaimer

	Feedback
	References

