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The transition from degrees to radians is often the most traumatic mathematical change that the

student has to endure whenmoving from elementary to intermediate mathematics. The simplicity

of 360° seems so much more welcoming than the equivalent of 2𝜋 radians for a full circle. 𝜋 is

forbidding, because it is not the convenient fractional fiction
22
7
, but rather a number which is both

transcendental and irrational, and therefore somewhat “untidy”. Surely this tradeoff between

simplicity and complexity must have been worth it, or it would not have been so ordained. Here

we attempt to fathom the method in the madness.

What is an angle?

Formost of us, the idea of an angle first arose whenwe studied geometry in elementary or primary

school. We then encountered triangles, which are closed figures with three straight sides and

three enclosed angles. An equilateral triangle is particularly symmetric, with three equal sides

and three equal angles, as shown in Figure 1.

The point at which a line meets another line is called a vertex, which means a “turning point”. By

convention, vertices (plural of vertex) are labelled with uppercase letters like 𝐴, 𝐵, and 𝐶. The
lengths of the sides opposite the vertices are assigned the lowercase labels 𝑎, 𝑏, and 𝑐 respectively.
The angles have been labelled with the Greek letters 𝛼, 𝛽, and 𝛾. For all equilateral triangles,
𝑎 = 𝑏 = 𝑐, by definition, and by symmetry, 𝛼 = 𝛽 = 𝛾.

Degrees

On encountering geometry, we very likely proudly trotted out our set of mathematical instruments,

which would include a pair of compasses, a protractor, one or two set squares, and a ruler or

straight edge. Of these, the protractor—that plastic semi-circle marked out in degrees—was the

proud badge that proclaimed that we had left behind arithmetic and progressed to geometry.

After we had learned to construct an equilateral triangle, using only compasses and a straight

edge—without measurement by ruler—we would take out the protractor to verify that each angle

of an equilateral triangle was indeed 60°. That small circle ° at the top—the superscript—was

called the degree sign, and we could then jubilantly celebrate our first rite of passage into geometry

and mathematical symbols.
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https://mathworld.wolfram.com/TranscendentalNumber.html
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Figure 1: An equilateral triangle is one in which the three sides and three angles are equal.

Where did degrees come from?

Surely, degrees did not come from a protractor, although we use one to measure angles. How did

degrees come about? With sixty degrees each in an equilateral triangle, ninety in a right angle ,

180° in a straight line, and 360° in a full circle, how did degrees come to rule the roost of angular

measure in elementary school?

Why not 100° in a full circle, or half circle, or even a quarter circle, also known as a right angle?

Who imposed this measure upon us and what is its basis?

My favourite explanation for 360° degrees equalling a full circle is that the ancients estimated a

solar year at around 360 days, and assigned one degree for each day of the year. Even if inexact,

the number 360 had some sexagesimal1 charm as it could be divided by the first three primes 2, 3,

5, and by their products. Indeed, 360 = 23 × 32 × 5. Accordingly, 360 has a large family of factors: 1,

2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180, and 360.

But beyond the approximation of a solar year, and the convenience of ready division by its factors,

the use of degrees as a unit of angular measure is, to me, arbitrary. Who deemed the circle to be

360°, despite it being very factor-friendly? A less arbitrary measure of an angle was required for

serious mathematics.

1It appears that all measures of time, from seconds, minutes, and hours, to months and days in a year, are based
on 60 or its factors or multiples.
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From triangles to circles

What is the root concept behind the idea of an angle? Harking back to the etymology of the word

vertex—and applying it to the equilateral triangle—when one line changes direction by sixty

degrees, we get the second line. These two lines form the angle. Therefore, a change of direction

may also be called turning or rotation.

The quintessential two-dimensional geometric figure that is associated with rotation is of course

the circle. It is the most simple and symmetrical two-dimensional figure we can construct. It is

the path or locus traced out by a point that remains the same distance from a fixed point called

the centre. When a protractor is centred on the centre of a circle, we can measure out degrees on

the circumference of the circle. So far so good. But what about that magic number 360? Well, we

are about to exorcise it now. 😉

Radians as an alternative to degrees

One traumatic transition for the student of elementary mathematics is when he or she is forced to

abandon the warm comfort of degrees as angular measure, and compulsorily made to embrace

the cold and cruel radian as the angular measure forever afterward. Why this unfair compulsion?

Using circles to measure angles

Because the idea of an angle is related to rotation, it seems natural that we should define angles

using the circle as a basis, rather than the triangles that we encountered at first.

It is a fact that the length of a circle, or its perimeter, or its circumference, 𝐶, is always related to its

radius, 𝑟, through the formula:

𝐶 = 2𝜋𝑟. (1)

And 𝜋 is not
22
7
as we were originally taught, but really a number whose precise expression cannot

be predicted or exhausted. The digits simply keep rolling on, without pattern or end. But the

beauty is that 𝜋 is nevertheless a unique number, a universal mathematical constant. It seems that

Nature has played a game on us by making the simple symmetrical circle have a circumference

that can only be approximated but never entirely known to an unlimited precision.2

One radian

So, how does one define a radian? If, on the basis of its name, you guessed that it very likely

involves the radius of a circle, your suspicion is well-founded. One radian is the angle subtended

at the centre of a circle of radius one unit by an arc that is also one unit long. This is illustrated in

Figure 2.

But what happens when our circle has a radius larger or smaller than one unit? We will take up

this case, after a short detour.

2𝜋, 𝑒 the base of natural logarithms, 𝜙 the golden ratio, along with a large pantheon of mathematical constants
are irrational, and some are even possibly transcendental. Why Nature has this preference for the irrational is an
intriguing question that needs an answer.
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Figure 2: One radian is the angle subtended at the centre of a unit circle by an arc of length equal to
one unit.
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Congruence and similarity

This is a mathematically non-rigorous digression on congruence and similarity, both of which are

first encountered in school in the context of triangles, as shown in Figure 3.

Figure 3: Similarity and congruence in the context of triangles. See the text for the explanation.

Consider the triangle 𝑋𝑌𝑍, and ignore for a moment triangle 𝐿𝑀𝑁. Suppose that 𝑋𝑌𝑍 is moved

in the direction of the line 𝑃𝑄 for a distance equal to the length of 𝑃𝑄. We would then have the

triangle 𝐿𝑀𝑁.

Triangle 𝐿𝑀𝑁, being a shifted version of triangle 𝑋𝑌𝑍, is identical with it, having identical

respective angles and sides. Indeed, if triangle 𝑋𝑌𝑍were laid on top of 𝐿𝑁𝑀, we could not tell

them apart. We say that triangle 𝑋𝑌𝑍 is congruent to triangle 𝐿𝑀𝑁.

Any two-dimensional geometrical shape is congruent to another if the two shapes may be super-

imposed3 on each other to visually demonstrate that they are indistinguishable.

Similarity is less restrictive than congruence and applies to geometric objects that have the same

shape but not necessarily the same size. In Figure 3, triangle 𝐴𝐵𝐶 is similar to triangles 𝑋𝑌𝑍 and

𝐿𝑀𝑁.

Intuitively, if two objects are similar, one may zoom in or zoom out on one object of the

pair—without distortion—to obtain a version that may be superimposed on the other object to

demonstrate that they are identical or congruent. In this case, we may enlarge triangle 𝐿𝑀𝑁 until

it attains the same size as triangle 𝐴𝐵𝐶. It will then be congruent to 𝐴𝐵𝐶.

The ratios of the respective lengths of corresponding sides of similar triangles are the same. In

like fashion, the ratio of any arc length to the radius of a circle is the same for all arcs subtending

the same angle at the centre. For example, the ratio of the circumference to the radius for two

circles of radii 𝑟1 and 𝑟2 will be
2𝜋𝑟1
𝑟1

= 2𝜋𝑟2
𝑟2

= 2𝜋, which is a constant.4 This is a consequence of

the fact that all circles are similar to each other.

3After any necessary translation and rotation.
4This also demonstrates that a full circle corresponds to an angle of 360° or 2𝜋 radians.
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What other classes of geometrical objects can you think of that are similar to each other within

their class?5

Radians as angular measure

Consider Figure 4 in which two circles having different radii are shown.

Figure 4: Generalizedmeasure of an angle in radians. The arbitrary angle 𝜃 in radians is defined as
𝜃 = 𝑠1

𝑟1
= 𝑠2

𝑟2
. The equality is valid because all circles are similar to each other.

We are now ready to define the value of any angle in radians. Consider a circle of radius 𝑟. Let an
arc of arbitrary length 𝑠 subtend an angle of 𝜃 at the centre. The angle 𝜃 in radians is defined to be:

𝜃 ≜ arc length

radius
= 𝑠
𝑟. (2)

By dividing the arc length by the radius, we have in effect normalized radian measure, and

removed any trace of arbitrariness6 in its definition. And that is why we started out with Figure 2,

which dealt with a circle of radius one unit. We know from Figure 4 that similarity guarantees

that the value
𝑠
𝑟
for any given 𝜃 is constant for all circles regardless of radius.

Note that the value of 𝜃 is a ratio of two lengths and is therefore dimensionless in the sense of

Physics. Although it may be considered a unitless pure number the SI units do define the radian as

the SI unit of angular measure.

In summary, we have the following:

1. Radian angular measure is directly proportional to arc length on the circle.

5All circles are similar, as are all equilateral triangles, all squares, and indeed, all regular 𝑛-gons, and all parabolas.
6Such as dependence on the radius of the circle.
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2. This measure is independent of the radius of the circle.

3. The resulting “unit” is really a unitless ratio of two lengths.

4. Since 360° equals 2𝜋 radians, 1° approximately equals 0.017453292 radians. Likewise, 1

radian equals approximately 57.29577951°.7

By defining radians as above, we remove the arbitrariness associated with 360° for a full circle.

But the mathematical elegance and rigour conferred by radians comes at a cost. The angle of a

full circle is 2𝜋, which is a computationally inconvenient number to say the least.

If you think about it, the size of an angle in radians is expressed as a ratio of two lengths. But we

have encountered angles being associated with ratios of lengths elsewhere in mathematics as

well. Such ratios are familiar to us from trigonometrywhere the sin, cos, and tan functions are

expressed as the ratios of lengths in a right-angled triangle. We review this relationship next.

Trigonometric ratios

Trigonometric ratios are one of the workhorses of applied mathematics. They arose from the

study of right-angled triangles. The three standard trigonometric ratios are called sine, cosine, and

tangent. They are represented by the abbreviated functional names sin, cos, and tan when used in

mathematics. Figure 5 shows the pictorial definitions of these three trigonometric ratios. Notice

particularly how these expressions are the unitless ratios of two lengths, just as with radians.

Figure 5: Trigonometric ratios defined as quotients of lengths of sides in a right-angled triangle.

7These conversion factors must dispel any mystique attached to radians vis-a-vis degrees.
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The Circular Functions

The trigonometric ratios in the context of triangles become the trigonometric functions in the

context of the circle. They are then are also called the circular trigonometric functions, uniting the

circle and the triangle as their progenitors. We will briefly review that relationship here, to better

understand not only the terminology but also the hidden relationships between the triangle and

the circle.8

I used to wonder why the word tangent was used for the name of a trigonometric function

because a circle was not involved in its definition; a triangle was. But when the three standard

trigonometric functions are viewed vis-a-vis a unit circle, the mystery behind the nomenclature is

revealed.

The radian was introduced here using a unit circle. The same helpful unit circle will serve to relate

the triangle and the circle to the trigonometric functions, as illustrated in Figure 6 below.

Figure 6 shows a unit circle drawn on the two-dimensional coordinate plane with 𝑥 and 𝑦 axes
and grid markings. The centre of the circle is 𝑂 and 𝑆 is a variable point on the circumference of

the circle, that makes a counter-clockwise angle 𝜃 with the positive 𝑥-axis. As 𝜃 varies, so does the
position of 𝑆 on the circle.

The line 𝑂𝑆 is a radius and therefore one unit in length. The perpendicular from 𝑆 to the 𝑥-axis
meets it at 𝐶. Referring to Figure 5, we may say cos 𝜃 = 𝑂𝐶

𝑂𝑆
= 𝑂𝐶 since 𝑂𝑆 = 1. Accordingly, the

𝑥-coordinate of 𝑆 is cos 𝜃. Likewise, sin 𝜃 = 𝑆𝐶
𝑂𝑆

= 𝑆𝐶. Thus, the 𝑦-coordinate of 𝑆 is sin 𝜃.

𝑆 is therefore the point with coordinates (cos 𝜃, sin 𝜃).

Note that since the coordinates of 𝑆 are confined to the unit circle, the values of sin 𝜃 and cos 𝜃
are confined to the closed interval [−1, 1], i.e. they perforce have values lying between −1 and
1, both inclusive. From Figure 6, we see that (cos 𝜃, sin 𝜃)—which represent the coordinates of

𝑆—take on signed values in accordance with the signs of 𝑥 and 𝑦 in the respective quadrants. One

could also view the associated lengths as signed values.

The tangent

The really insightful revelation from Figure 6 comes from looking at tan 𝜃. Have you ever

wondered why the ratio tan 𝜃 = sin𝜃
cos𝜃

is called the tangent?

Recall from geometry that a straight line and a circle might lie relative to each other in three

different ways as shown in Figure 7.

The line 𝐴𝐵 does not cut or intersect the circle at all. The line 𝐸𝐹 cuts the circle at two points, 𝐸
and 𝐹, and is called a chord. When the line 𝐸𝐹moves parallel to itself toward the circumference

of the circle, we get the chord 𝐸′𝐹′. Eventually the points 𝐸′ and 𝐹′ will coincide and the line will

cut the circle at one and only one point.

8The equilateral triangle is the regular 𝑛-gon with the smallest number of sides and the circle is the limiting case
of an 𝑛-gon when 𝑛 tends to infinity. The trigonometric functions are the children of these unlikely parents, at the
extreme ends of the 𝑛-gon spectrum.
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Figure 6: A pictorial representation of the unit circle, the three standard trigonometric functions, and
their inter-relationships. See the text for a full explanation.
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Figure 7: The three different ways in which a circle and line may lie relative to each other. See the text
for the explanation.

This case is illustrated by the line 𝐶𝑇𝐷 which cuts the circle at only one point, 𝑇. 𝐶𝑇𝐷 is called a

tangent (line) to a circle and 𝑇 is the point of tangency.9 Note that the radius 𝑂𝑇 is perpendicular

to the tangent 𝐶𝑇𝐷.

With that out of the way, we know from Figure 5, that the tangent is the ratio of the lengths of the

opposite side to the adjacent side, which in Figure 6 translates to tan 𝜃 = 𝑆𝐶
𝑂𝐶

. But the denominator

in this case, 𝑂𝐶, is not 1 like it was for the other two trigonometric ratios. To work around this,

with reference to Figure 6, we construct the triangle 𝑂𝐷𝑇 thus:

a. Extend10 the line 𝑂𝐶 to intersect the circle at the point 𝐷 which is (1, 0). 𝑂𝐷, being a radius,
has unit length.

b. Draw a tangent 𝑇 ′𝐷𝑇 to the circle at 𝐷.
c. Extend the radius 𝑂𝑆 to intersect the tangent at the point 𝑇.

Because the triangle𝑂𝐷𝑇 is similar to triangle𝑂𝐶𝑆, we can assert that the ratios of corresponding

sides are equal. Thus,

tan 𝜃 = 𝐶𝑆
𝑂𝐶 = 𝐷𝑇

𝑂𝐷 = 𝐷𝑇 (3)

bearing in mind that, like 𝑂𝑆, 𝑂𝐷 is also a radius of unit length. We resorted to this construction

for the following reasons:

1. Because 𝑇 ′𝐷𝑇 is tangent to the circle, the angle 𝑂𝐷𝑇 is a right angle.

2. The triangles 𝑂𝐶𝑆 and 𝑂𝐷𝑇 are therefore similar.

9Therefore, the tangent is a limiting case of a chord.
10Extending a line used to be called producing a line but that usage has now slipped into relative obscurity.
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3. The length of 𝑂𝐶 is not one unit, but that of 𝑂𝐷 is one unit.

From Figure 6 the length of the tangent line 𝐷𝑇 is equal to tan 𝜃, explaining the nomenclature.

Therefore, the value of the tangent function for an angle 𝜃may be determined geometrically by

extrapolating the radius 𝑂𝑆 until it intersects the tangent to the circle at 𝐷 at a point called 𝑇.11

The length 𝐷𝑇 is the value of tan 𝜃.

Note, though, that tan 𝜃 is a length outside the unit circle and is therefore not constrained to take on

values between−1 and 1. Indeed, as 𝜃 starts increasing in the first quadrant of the unit circle, you

will notice that as 𝑂𝑆 approaches the 𝑦-axis and as 𝜃 approaches 𝜋
2
(or 90°, if you are still attached

to degrees), the line 𝑂𝑆 is increasingly aligned with 𝐷𝑇. At 𝜃 = 𝜋
2
, 𝑂𝑆 is parallel to 𝐷𝑇 and “never

the twain shall meet”. Loosely speaking, parallel lines are only supposed to “meet at infinity” and

that is why tan
𝜋
2
is said to be “infinite” at that point. I find this geometric explanation—of why

tan 𝜃 does not assume a finite value at 𝜃 = 𝜋
2
—most fulfilling.

When 𝜃 is in the third quadrant, for instance, 𝑂𝑆 extrapolated in the negative 𝑦 direction will

not intersect the tangent 𝐷𝑇 ′ in the negative 𝑦 direction as they diverge. So, the line 𝑆𝑂must be

produced in the positive 𝑦 direction to once more intersect the tangent 𝑇 ′𝐷𝑇 at 𝑇. That explains
why tangents of angles in the third quadrant are positive.

The trigonometric functions

By moving from triangles to the unit circle on coordinate axes, we have enabled 𝜃 to take on any

value between 0 and 2𝜋 radians. The trigonometric ratios have been unshackled from the triangle

to become the trigonometric functions which can take on any real number as arguments. The

graphs of the three standard trigonometric functions are shown in Figure 8.

Note that when 𝜃 = 2𝜋 radians, we cannot really distinguish it from 𝜃 = 0 radians. The trigono-
metric functions therefore repeat themselves every time the point 𝑆 in Figure 6 completes a full

circle: they are periodic with a period of 2𝜋. So, one angle may masquerade as another unless we

have accounting devices to optionally add 2𝑛𝜋 to it with the proviso that 𝑛 is an integer.

When trigonometric functions like sin𝑥 are differentiated or integrated, the variable 𝑥, represent-
ing the angle, must be measured in radians. Moreover, when oscillatory phenomena, whether of

water, or electricity, or light, are studied in the physical sciences and engineering, trigonometric

functions usually form part of the solution. The importance of 𝜋 is therefore entrenched in

the importance of trigonometric functions and radian measure, in solving a variety of physical

problems. And this concept is a segue to power series expansions of trigonometric functions, their

use in calculus, and later on, in Fourier series.

Power series for trigonometric functions

This is where the plot really thickens.

11One could also extraolate in the opposite direction to intersect at, say, the point T’.
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Figure 8: Graphs of the three trigonometric functions. Notice how sin and cos are bounded in their
values, but tan is not. There are discontinuities for 𝜃 = 2𝑛+1

2
𝜋.
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Both the statements sin(30°) = 0.5 and sin(𝜋
6
) = 0.5 are factually correct and perfectly acceptable.

We will not be committing any mathematical heresies through either statement.12

But it is possible to express trigonometric functions in terms of power series in which an argument

in degrees would be inadmissible. It is only after we cross this threshold in mathematics that

radians truly come into their own, after which there is “no going back to the old ways”.

I will now do a bit of hand-waving and say that it has been proved13 that:

sin 𝜃 = 𝜃 − 𝜃3
3! +

𝜃5
5! −

𝜃7
7! +⋯ (4)

where the dots at the end of Equation (4) tell us to imagine that this series never ends but goes on

forever following the pattern shown. Equation (4) demonstrates a paradox: a trigonometric func-

tion is not a polynomial; yet a trigonometric function may be expressed as an infinite polynomial.

Infinity has this beguiling attribute of “enabling the impossible.”

Recall that if a number is less than one, raising it to a power greater than one makes it smaller

than it originally was. So, when 𝜃 is very close to zero, the higher powers on the right hand side

(RHS) of Equation (4) become smaller and smaller, and may be ignored without much loss in

accuracy. In this case, we may assert that:

sin 𝜃 ≈ 𝜃 for |𝜃| → 0. (5)

In English this expression means that for vanishingly small values of 𝜃—whether positive or

negative—sin 𝜃 is approximately equal to 𝜃.

From Figure 5 we know that the number on the left hand side (LHS) of Equation (5) is a unitless

ratio of two lengths and thus a “pure” number. This requires the right hand side to be also

expressed in a similar unitless measure, and the radian fits the bill.

The validity of Equation (5) may also be seen from Figure 9 where the closeness of the curve

𝑓(𝜃) = 𝜃 and 𝑓(𝜃) = sin 𝜃 near the origin is evident. Indeed, right up to a value of |𝜃| ≈ 0.3, the
two curves track each other closely.

Let us now illustrate the reasonableness of Equation (5) by evaluation. Set 𝜃 to 0.005 radians, which

is a small value close to zero. Then sin 𝜃 = sin(0.005) = 0.004999979167, which demonstrates the

validity of Equation (5). However, if one were to interpret the number 0.005 as degrees rather

than radians, we then have sin(0.005°) = 0.00008726646249 which is almost 57 times smaller

than the number 0.005.

The moral of this example is that when we evaluate trigonometric functions in degrees in the

context of their power series, we must apply a correction factor of
𝜋
180

to implicitly convert the

function argument on the LHS from degrees to radians. Otherwise, keeping the degree argument,

we have to apply a factor of
180
𝜋

to each term on the RHS. This is a layer of bookkeeping we may

easily avoid by using radians on both sides of the equation.

12Note that while it is mandatory to affix the degree sign as a superscript, radians being pure numbers do not
require any special identification.

13Search the web for Taylor Series or Maclaurin series, thinking of it as a treasure hunt and enrich yourself with
that knowledge!
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Figure 9: Graphs of 𝑓(𝜃) = sin 𝜃 and 𝑓(𝜃) = 𝜃 for |𝜃| ≈ 0.
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Fourier series

Periodic waveforms repeat themselves indefinitely. The sinusoids—which are trigonometric

functions like sin and cos—are one such example. Such waveforms arise frequently in signal

analysis and synthesis in electrical engineering. In that context, the independent variable is time.

A periodic functionwith certain properties may be represented by an infinite sum of sinusoids.

This was the great insight of Jean-Baptiste Joseph Fourier from whom Fourier series derive their

name.

For example, let the original signal be a square waveform denoted by the function 𝑠(𝑡) in Fig-

ure 10.14 Imagine that the single cycle of the squarewave—shown below— is repeated periodically

forever.

Figure 10: A square waveform 𝑠(𝑡) and the sequential sums of its first four terms.

The Fourier series for such a square waveform is an infinite sum of sinusoids that collectively

represent the waveform. This might seem like a tall order but it is nevertheless true. The Fourier

series representation of the square wave 𝑠(𝑡) is given by:

𝑠(𝑡) = 2
𝜋 [sin(𝑡) +

sin(3𝑡)
3 + sin(5𝑡)

5 + sin(7𝑡)
7 +⋯] (6)

where again, the dots mean that the pattern repeats forever. Note that this is no approximation,

but an equality.

14Strictly speaking, there are point discontinuities in 𝑠(𝑡), at 𝑡 = 𝜋 and 𝑡 = 2𝜋, where the function changes value.
The graph of the waveform is shown as a vertical line at these points because that is what an oscilloscope trace of
the waveform will show. This is convenient but inaccurate because a function cannot be multi-valued at one point.
Nevertheless, the theory behind Fourier series is still applicable to the square wave. The Fourier series will converge
at these points to zero—the average value at these discontinuities—which is what the partial sums show.
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The successive partial sums of the RHS of Equation (6) are termed 𝑠1(𝑡), 𝑠2(𝑡), etc., with 𝑠1(𝑡)
denoting the first term, 𝑠2(𝑡), the sum of the first and second term etc. It is evident from Figure 10

that themore termswe add, the better thematch between the original signal and its approximation,

denoted generically by 𝑠∗(𝑡) in the graph.15

On the surface, Equation (6) seems a remarkable claim. How could a square wave with right angle

corners be the result of sums of sine waves which have no corners? The answer lies in the fact

that the series goes on forever and “infinity confers the equality”.

Where do radians feature here? As with the power series for the sine function, it is on the RHS

where the variable 𝑡 should be expressed in radians. Note that while 𝑡may have units of time, the

fact that radians are unitless does not intrude into the equation as an extraneous factor.

We will close with one more example where radians make mathematical life much easier.

Euler’s formula and identity

The prodigiously productive Swiss mathematician, Leonhard Euler, gave us many equations, one

of which is known as Euler’s formula, shown below:

𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃 (7)

The letter 𝑖 is called the imaginary unit and its definition as 𝑖2 = −1, takes us into the field of

complex numbers.16

When we substitute 𝜃 = 𝜋 into Equation (7), and transpose terms, we get what is called Euler’s

identity:

𝑒𝑖𝜋 = cos𝜋 + 𝑖 sin𝜋
𝑒𝑖𝜋 + 1 = 0

(8)

Equation (8) has been described as the most poetic mathematical equation because it unites in

one equation the five most fundamental quantities in all of mathematics: 𝑒, 𝑖, 𝜋, 1 and 0. And it

could not have come about without radians. With that epiphany on beauty, we shall conclude our

tale of two measures.
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