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This blog began life more than two decades ago, as part of a series of lectures I delivered to

some very bright first-year engineering students at an Australian university.

The number 𝜋 (pronounced “pie”) has been recognized from time immemorial because its

physical significance can be grasped easily: it is the ratio of the circumference of a circle to its

diameter. But who would have thought that such an innocent ratio would exercise such endless

fascination because of the complexities it enfolds?

Not surprisingly, some high school students I met recently wanted to know more about 𝜋
and how it got its unusual value of

22
7
. Accordingly, I have substantially recast and refreshed

my original presentation to better accord with the form and substance of a blog. The online

references have also been updated to keep up with a rapidly changing Web.

My original intention was to write a single blog on 𝜋. But because I did not want it to become

yet another overly long slog, I have decided to divide the material into two parts.

If there are any errors or omissions, please email me your feedback.

Circumference, diameter, and π

The straight line or geodesic is the shortest distance between any two points on a plane, sphere, or

other space. The circle is the locus traversed by a moving point that is equidistant from another,

fixed point on a two-dimensional plane. It is the most symmetrical figure on the plane. The

diameter is the name given both to any straight line passing through the centre of the circle—in-

tersecting it at two points—as well as to its length. When we divide the perimeter of a circle, more

properly called its circumference, 𝐶, by its diameter, 𝑑, we get the enigmatic constant 𝜋, which

has a value between 3.141 and 3.142:1
𝐶
𝑑 = 𝜋. (1)

The diameter 𝑑 is twice the radius 𝑟, and substituting for 𝑑 into Equation (1), we get the well-known

school formula:

𝐶 = 𝜋𝑑 = 2𝜋𝑟 ≈ 2 [227 ] 𝑟 ≈ 6.28𝑟. (2)

Note, however, that 𝜋 is not exactly equal to
22
7
. This value is a convenient rational fraction

approximation for 𝜋 that serves well in elementary contexts.2

1The analogous expression for a unit squarewith a perimeter of4 units and a diagonal of√2 units is 2√2 ≈ 2.8284.
2See “A tale of two measures: degrees and radians”.
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You might reasonably wonder whether the ratio of the circumference to the diameter of any

circle is always 𝜋. The answer is “Yes”, because all circles are similar. The ratios of corresponding

lengths of similar figures are equal. This idea is also covered in my blog “A tale of two measures:

degrees and radians”.

The symbol 𝜋 is the lowercase version of the sixteenth letter of the Greek alphabet. For the history

of its use in mathematics, see adoption of the symbol π in Wikipedia.

Figure 1: The ratio of the circumference to the diameter of any circle is 𝜋.

Figure 1 shows the relationships in Equations (1) and (2) pictorially. The circumference of a circle

is about 6.28 times its radius. Why this should be so is a secret of Nature, a conundrum of the

spacetime [1] we inhabit.3

A wonderfully revealing story lies behind this mysterious relationship—between the circum-

ference of a circle and its diameter—and it is due to the labours of one man, in the days when

calculators could not be dreamed of, and when neither the decimal system of numbers, nor

trigonometry were known. It is the story of Archimedes and his estimate of 𝜋.
3This article is well worth reading; it will help enlarge your idea of what space is.
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Archimedes of Syracuse

Archimedes of Syracuse4 (Ἀρχιμήδης, 287–212 BCE) was a polymath and genius of the ancient world.

He was one of the greatest mathematicians the world has ever known. By today’s standards, he

would be called a mathematician, physicist, engineer, and astronomer, all rolled into one. He is

perhaps most famous for running out of his bathtub naked exclaiming “Eureka”—Greek for “I

have found it”—oblivious of those around him. The principle that he had then discovered—that

the upthrust on a body submerged in a fluid is equal to the weight of fluid displaced—is known as

Archimedes’ Principle.

Figure 2: Archimedes of Syracuse.5

Among the many accomplishments of Archimedes is his method for estimating 𝜋, which was

the best approximation for almost 1900 years. And it was not based on using a length of string,

superimposing it on a circle, and getting an estimate! 😉

What is even more remarkable is that Archimedes made his discovery without the benefit of:

(a) the real numbers;

(b) algebra;

(c) trigonometry;

(d) decimal notation; and

(e) devices like logarithm tables, slide rules, calculators, or computers.

4His very name, Archimedes, means “master thinker” in Greek.
5Domenico Fetti’s 1620 painting entitled Archimedes Thoughtful. Public domain.
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Instead he applied geometry—including the theorem of Pythagoras—and extracted rational values

for square roots, laboriously by hand.

His method is also an excellent geometrical illustration of the idea of a limit, with which he was

doubtless familiar. It is known that Archimedes was aware of what we now know as integral

calculus, and it is possible that he may have anticipated differential calculus as well.

Archimedes devised an ingeniousmethod for estimating𝜋 by obtaining successivelymore accurate

values for the circumference of a circle.

Figure 3: Portrait of Archimedes generated by AI and available at the Craiyonwebsite here. All portraits
of Archimedes are flights of fancy rather than true likenesses.

Principles used by Archimedes

The method that Archimedes devised is instructive because it is a synthesis of several principles

by which the greatest human minds have furthered scientific progress over time. The abstract

principles that Archimedes used to estimate 𝜋 include:

1. Start with the known and progress to the unknown;

2. Initialize variables;

3. Devise a method of increasing the accuracy through repetition;

4. Stop when the desired accuracy is reached.
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These steps constitute what is known as an algorithm. Once such a systematic framework has

been put in place, it can be applied in many research domains to aid rapid scientific progress.

Algorithms are the basis of modern computing.

Of polygons and circles

The goal of Archimedes was to estimate the circumference and area of a circle by a systematic and

logical method. That 𝜋 is involved in both of these measurements was somewhat incidental to

Archimedes.6 Nevertheless, his approach is the first well documented account of how to estimate

𝜋 with reasonable accuracy, and is the focus of this blog.

Archimedes considered a circle, containing an inscribed regular polygon with 𝑛 sides, and cir-

cumscribed by a regular polygon with the same 𝑛 sides. Figure 4 illustrates this for the case 𝑛 = 6,
i.e., with a regular hexagon.

Figure 4: The circumference of the circle in darkolivegreen is bounded from below by the perimeter
of the inscribed regular hexagon in maroon and bounded from above by the perimeter of the cir-
cumscribed regular hexagon in midnightblue. The circumference of the circle must lie between the
perimeters of these two hexagons. The value 𝑟 is the radius of the circle and the height ℎ—from the
centre to the mid-point of a side—is called the apothem.

Archimedes “started with the known” perimeter and area of a regular hexagon. A hexagon of

side 𝑟 has a perimeter of 6𝑟, and its area is the area of six equilateral triangles of side 𝑟, which is
3√3𝑟2

2
.8

Let us tabulate below the variables arising from Figures 4 and 5.

6The area of a circle is given by the complementary formula𝐴 = 𝜋𝑟2.
7Recall that the area of a triangle is half the product of its base and perpendicular height
8See later in this blog for how these numbers are obtained.
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Figure 5: The relationship between the circle and its inscribed and circumscribed regular polygons.
The symbol ℎ is used for the apothem in both cases. Note that𝑂𝐷 = ℎ = 𝑟 cos 𝜃 for the inscribed
polygon, whereas𝑂𝐶 = ℎ = 𝑟 for the circumscribed polygon.7
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Table 1: Circle, inscribed, and circumscribed regular polygons (𝑛-gons).

Parameter Circle Inscribed Circumscribed

Radius 𝑟
Sides 𝑛 𝑛
Length 2𝑟 sin 𝜃 2𝑟 tan 𝜃
Angle 𝜃(𝑛) = 𝜋

𝑛
= 180°

𝑛
𝜃(𝑛) = 𝜋

𝑛
= 180°

𝑛
Apothem ℎ = 𝑟 cos 𝜃 ℎ = 𝑟
Area 𝐴 = 𝜋𝑟2 𝑎(𝑛) = 𝑛 sin 𝜃 cos 𝜃𝑟2 𝐴(𝑛) = 𝑛 tan 𝜃𝑟2

Perimeter 𝐶 = 2𝜋𝑟 𝑐(𝑛) = 2𝑛 sin 𝜃𝑟 𝐶(𝑛) = 2𝑛 tan 𝜃𝑟

When 𝑛 varies, so do the values of 𝜃 and the areas and perimeters; they are therefore shown as

functions of 𝑛 in ?? .

The power of repetition

Archimedes started with regular hexagons and successively doubled the number of sides, until he

had the circle closely sandwiched between two 96-sided-regular polygons—one inscribed; the

other circumscribed.

Successively doubling or halving is a fast-converging technique used in numerical estimation,

called the bisection method, that is applied to solving a variety of problems. That Archimedes was

aware of it, shows how far ahead of his time his thinking was.

When he moved from 𝑛 = 6 to 𝑛 = 12 sides, how did Archimedes estimate the respective

perimeters without the aid of trigonometry? He used geometry and the Pythagorean theorem,

as described later in this blog. This online presentation [2] explains his method with fidelity. A

more recent account [3] is more accessible, but relies to some extent on trigonometry. He thereby

obtained recurrence relations that gave the current perimeter from the previous one.

Archimedes repeatedly calculated rational approximations to 𝜋 until he was satisfied with the

accuracy. The principle of the method is clearly illustrated in Figures 6 to 10.

The original source material from the man himself, is the book, Measurement of a Circle by

Archimedes. For an English translation of the book click on this link. It will give you a sense of

completeness in your understanding of his method.
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Figure 6: The estimate for 𝜋 lies between 𝑐(6) = 3.0000 < 𝜋 < 𝐶(6) = 3.4641.

Figure 7: The estimate for 𝜋 lies between 𝑐(12) = 3.1058 < 𝜋 < 𝐶(12) = 3.2153.
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Figure 8: The estimate for 𝜋 lies between 𝑐(24) = 3.1326 < 𝜋 < 𝐶(24) = 3.1596.

Figure 9: The estimate for 𝜋 lies between 𝑐(48) = 3.1393 < 𝜋 < 𝐶(48) = 3.1460.
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Figure 10: The estimate for 𝜋 lies between 𝑐(96) = 3.1410 < 𝜋 < 𝐶(96) = 3.1427. Notice in this
sequence of images how the circumference of the circle approaches the perimeter of the inscribed
and circumscribed hexagons to the point of being indistinguishable from either of them. The final
estimate of Archimedes was 223

71
< 𝜋 < 22

7
.
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Calculus, before it was discovered

Evaluating the bounds given in ?? and Equation (6) by setting 𝑟 = 1, 𝑛 = 6, and 𝜃 = 180
𝑛
= 30°9

gives us these values, expressed to four decimal places:

𝐶𝑖 = 2𝑛 sin 𝜃𝑟 = 12(sin 30°) = 12(0.5) = 6.0000.
𝐶 = 2𝜋𝑟 = 6.2381.

𝐶𝑐 = 2𝑛 tan 𝜃𝑟 = 12(tan 30°) = 12 (√3
3
) = 4√3 ≈ 6.9282.

(3)

Archimedes doubled 𝑛 four times to compute values for regular polygons with 12, 24, 48, and 96
sides. For his last calculation with 𝑛 = 96 and 𝜃 = 180

96
° ≈ 1.875°, we have:

𝐶𝑖 = 2𝑛 sin 𝜃𝑟 = 2(96) sin 1.875° ≈ 192(0.0327) ≈ 6.2820.
𝐶 = 2𝜋𝑟 = 6.2381.
𝐶𝑐 = 2𝑛 tan 𝜃𝑟 = 2(96) tan 1.875° ≈ 192(0.0327) ≈ 6.2854.

(4)

Note that in the case of 96 sides, we have a very small angle 𝜃 whose sin and tan are almost equal.

This is what gives us tight bounds on the estimate of 𝜋. If you know the power series for sin 𝜃 and
tan 𝜃, you will appreciate even better how the value of 𝜋 is trapped and squeezed between these

two rather close limits.

Remember Equation (4) because it helps us to estimate lower and upper bounds for the value of

the circumference.

Archimedes stated his final estimate of 𝜋 as [4]:

223
71 < 𝜋 < 22

7 . (5)

Archimedes’ application of the squeeze theorem nineteen centuries before the calculus was

invented is illustrated in the series of Figures 6 to 10.

If you study the calculus or analysis later on, and encounter the epsilon-delta (𝜖 − 𝛿) definition of

a limit, hark back to this example of Archimedes for a graphic and concrete example of how a

value may be bounded from below and above, and how it may be squeezed into the limit.

Initial results

If we divide the last row of entries in ?? by 2𝑟, we get the entries 𝜋, 𝑛 sin 𝜃, and 𝑛 tan 𝜃. We will

use these values henceforth as they are directly comparable and relatable to 𝜋.

𝑎(𝑛) < 𝐴 < 𝐴(𝑛) ⟹ 𝑛 sin 𝜃 cos 𝜃 < 𝜋 < 𝑛 tan 𝜃
𝑐(𝑛) < 𝐶 < 𝐶(𝑛) ⟹ 𝑛 sin 𝜃 < 𝜋 < 𝑛 tan 𝜃

(6)

9Rather than use radians with 𝜋 entering the proceedings, I decided to stick with degrees as units to avoid
confusion. If one uses power series to probe further, of course, radians are called for.
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From the right hand side of Equation (6), using the inequalities for perimeters, we have

𝑛 sin 180°
𝑛

= 𝑛 sin 𝜋
𝑛
, for the lower bound. (7)

and

𝑛 tan 180°
𝑛

= 𝑛 tan 𝜋
𝑛
, for the upper bound. (8)

Equations (7) and (8) represent respectively the lower and upper bounds on the value of𝜋 obtained

through the method of Archimedes using polygon perimeter.

If, instead, we were to use polygon area, the relevant equations will be obtained by dividing the

second last row of ?? by 𝑟2. The resulting equations will be:

𝑛 sin 180°
𝑛

cos
180°
𝑛

= 𝑛 sin 𝜋
𝑛
cos

𝜋
𝑛
, for the lower bound. (9)

and

𝑛 tan 180°
𝑛

= 𝑛 tan 𝜋
𝑛
, for the upper bound. (10)

Note that Equation (8) and Equation (10) are equal. Therefore, the upper bound is the same,

regardless of whether we consider polygon area or perimeter.

Obviously, the circle may be viewed as a regular polygon whose number of sides, 𝑛, has become

exceedingly large, or infinite. So, as 𝑛 is increased, we should expect the two bounds to converge

to the limiting value of 𝜋.

Table 2: Estimates of 𝜋 from the perimeters and areas of inscribed and circumscribed polygons of 𝑛
sides.

𝑛 𝑛 sin 180°
𝑛

𝑛 tan 180°
𝑛

𝑛 sin 180°
𝑛

cos
180°
𝑛

𝑛 tan 180°
𝑛

6 3.0000000000 3.4641016151 2.5980762114 3.4641016151
12 3.1058285412 3.2153903092 3.0000000000 3.2153903092
24 3.1326286133 3.1596599421 3.1058285412 3.1596599421
48 3.1393502030 3.1460862151 3.1326286133 3.1460862151
96 3.1410319509 3.1427145996 3.1393502030 3.1427145996
100 3.1410759078 3.1426266043 3.1395259765 3.1426266043
1000 3.1415874859 3.1416029891 3.1415719828 3.1416029891
10000 3.1415926019 3.1415927569 3.1415924469 3.1415927569
100000 3.1415926531 3.1415926546 3.1415926515 3.1415926546
1000000 3.1415926536 3.1415926536 3.1415926536 3.1415926536

The upper and lower bounds are equal up to ten decimal digits when 𝑛 = 106, and we might as

well declare the problem of estimating 𝜋 solved. But in the time of Archimedes, trigonometry was

not known; only geometry was. Moreover, the decimal system and calculators were far off in the

future. We are not done yet!
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Figures 6 to 10 together present a compelling case for why the estimate for 𝜋 is sandwiched

between two values and becomes ever closer to the true value of 𝜋. It is this engine of logic on
which the algorithm runs.

We can view Archimedes’ approach through the lens of a mathematical function as well. We could

plot discrete values of 𝑛 against 𝑛 sin 180°
𝑛

, and 𝑛 tan 180°
𝑛

. However, if we relax the conditions, and

move from integers to real values, i.e., from discrete 𝑛 to continuous 𝑥; from 𝑛 sin 180°
𝑛

to 𝑥 sin 180°
𝑥

,

and from 𝑛 tan 180°
𝑛

to 𝑥 tan 180°
𝑥

, we may plot these two curves against 𝑥 to better visualize the

functional relationship. This is shown in Figure 11.

Figure 11: Plot of 𝑥 sin 180°
𝑥

and 𝑥 tan 180°
𝑥

versus 𝑥 in the domain [6 ∶ 100]. The actual data points
obtained by Archimedes are shown as coloured circles. As 𝑥 becomes large, the values of the functions
approach 𝜋—indicated by a dashed horizontal line which is also a horizontal asymptote to the two
curves. The shapes and positions of the two curves themselves eloquently explain why they are called
the upper and lower bounds.
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Sanity checks

Sanity checks help nip errors in the bud, and are an essential part of problem solving. We perform

two of them here.

1. Does 2𝜋 = 6.2820, from a calculator, lie within the bounds of Equation (4)? Yes, indeed, and

we are home and dry.

2. When 𝑛 is very large, we expect 𝑛 sin 180°
𝑛

and 𝑛 tan 180°
𝑛

to be closer and closer to the true

value of 𝜋. This is apparent from ?? . But if we need to be doubly sure, we can set 𝑛 = 106

and evaluating on a calculator we get 106 sin 180°
106

= 3.14159which is reassuring. Likewise,

106 tan 180°
106

= 3.14159. This means that to five decimals places, the two bounds are equal to

each other and to the actual value of 𝜋 = 3.14159. All is well again.

A reflection on triangles and circles

It is interesting that the method of Archimedes leverages the properties of the equilateral triangle,

which is the regular polygon with the smallest number of sides. And it ends with the circle,

which is the regular polygon with an infinite number of sides. Linking both these extremes is

trigonometry, which we have used extensively thus far. This deep connection between the triangle,

the circle, and the trigonometric functions also explains why they are sometimes called the circular

functions.10

Wenowhave to backtrack and attempt to retrace the steps Archimedes used to estimate𝜋—without

trigonometry—to better appreciate his heroic efforts.

The thirty-sixty-ninety right triangle

Archimedes applied the principle “of starting with the known” to initiate his algorithm using a

regular hexagon, which is amosaic of six juxtaposed equilateral triangles. Weknow from symmetry

that each angle of an equilateral triangle is 60°. When an equilateral triangle is bisected, we get

two right-angled triangles with angles of thirty and sixty degrees, as shown in Figure 12.

The inscribed hexagon, within a circle of radius one unit, also has a side of one unit. Thus, the

hypotenuse of the circle𝑂𝐴𝑃 in Figure 12 has a length of 2 units. Moreover, the base 𝑂𝑃, resulting
from a bisected side, has a length of one a unit. By applying the theorem of Pythagoras, the third

side, 𝐴𝑃 is

√22 − 12 = √3. (11)

Extracting square roots by hand

The next thing Archimedes needed—and knew how to do—was to compute√3, which figures in

Equation (11). Finding square roots is a tedious process, not unlike long division, and prone to

human error. The patience and doggedness of Archimedes that must have gone into the effort is

astounding.

10See my blog A tale of two measures: degrees and radians.
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Figure 12: This right-angled triangle, obtained by bisecting an equilateral triangle, must be famil-
iar to all school students. The lengths shown—obtainable from symmetry and the theorem of Py-
thagoras—allowed Archimedes to start off his process for estimating 𝜋. The dotted circle is strictly
not necessary in our approach, but pays homage to Archimedes, who relied on triangles within semi-
circles to enforce right angles.
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Archimedes must have known how to extract square roots by hand. Perhaps, he used one of the

methods described in my blog “How Are Numbers Built?”. He should have known the value of√3
as a rational fraction. With remarkable accuracy, he claimed [4] that:11

1.73205128 = 1351
780 > √3 > 265

153 = 1.7320261437908496 (12)

Trigonometry and half-angles

Although Archimedes had no trigonometric tables to aid him, he did know the square root of

three, and the geometric properties of triangles whose angles were repeatedly bisected.

For example, he calculated the length of the side of a regular dodecagon using the known length

of the side of a regular hexagon, as he successively doubled the sides of the regular hexagon. He

repeated the same algorithmic step—with previous values feeding into calculations for current

values—which is a bit like a snake eating its own tail [5].

Figure 13: Ouroboros: a snake eating its own tail.12

We will look at the method of Archimedes a little later, but for now, we will try to simulate what

he did using trigonometry.

From Figure 12, we know:

sin 30° = 1
2

cos 30° = √3
2

tan 30° = 1
√3

= √3
(√3)(√3)

= √3
3

(13)

11The rule above the digits indicates the sequence that recurs in the decimal representation. The value of √3
rounded to ten decimal places is 1.7320508076.

12https://openclipart.org/user-detail/xoxoxo, CC0, via Wikimedia Commons
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The half-angle formulae

The whole trick is to

a. move from one estimate to the next, more accurate estimate of 𝜋; and

b. use a known value of a trigonometric function to estimate the next unknown value in the

chain, without resorting to tables of values, or calculators.

The trigonometry of half angles in terms of the full angle [6] helps relate the successive values of

𝜃:13

sin
𝜃
2 = √

1 − cos 𝜃
2

cos
𝜃
2 = √

1 + cos 𝜃
2

Let us step through this:

1. We know from Figure 12 and Equation (13) that sin 30° = 1
2
and cos 30° = √3

2
.

2. We calculate the trigonometric ratios for 15° from cos 30° using the half-angle formula:

sin 15° =

√√√

√

1− √3
2

2

= √
2 −√3

4

= 1
2√2 − √3

cos 15° =

√√√

√

1+ √3
2

2

= √
2 +√3

4

= 1
2√2 + √3

tan 15° =
√2 − √3

√2 +√3

For comparison with another method we will use later on—in The angle bisector the-

orem—the value of sin 15° from the equation above is 0.2588190451025208.

13All angles are in the first quadrant.
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3. Using the value of cos 15°, for 7.5°14 we get

sin 7.5° =

√√√

√

1− 1
2√2+√3

2

= 1
2√2 −√2 +√3

cos 7.5° =

√√√

√

1+ 1
2√2+√3

2

= 1
2√2 +√2 +√3

4. Using the value of cos 7.5°, for 3.75°, we get

sin 3.75° =

√√√√

√

1− 1
2√2+√2 +√3

2

= 1
2√2 −√2 +√2 +√3

cos 3.75° = 1
2√2 +√2 +√2 +√3

5. A pattern can be seen, and a guess may be hazarded that the values for 𝜃 = 1.875° corres-
ponding to 𝑛 = 96 should be:

sin 1.875° = 1
2

√√√

√2−√2 +√2 +√2 +√3

cos 1.875° = 1
2

√√√

√2+√2 +√2 +√2 +√3

Becausewe guessed, we checked the valuewe obtained above—expressed as a decimal—with

a calculator, and it checked out.

Wewent through this somewhat painful process for the reasons outlined belowbecausewewanted

to simulate the steps Archimedes took [2,3]. It is a proof of concept: we have only evaluated the

sine and cosine values, and not estimated the two perimeters. The following points bear noting:

(a) Archimedes knew the sine of 30° and had to work out all other values by hand, without using

decimals. That was why we started with a regular hexagon, and retained surds, along with

their awkward algebraic manipulation.

14Since tan𝜃 = 𝑠𝑖𝑛𝜃
cos𝜃

we can save ourselves some mathematical labour by leaving out the calculation for tan𝜃.
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(b) Archimedes only knew rational numbers of the form
𝑎
𝑏
where 𝑎 and 𝑏 are integers and

𝑏 ≠ 0. So, his approximations for √2 and √3 were expressed as improper fractions that

approximated those numbers.

(c) Archimedes did not have positional notation for his calculations and he had to rely on an

arithmetical system that we would find forbidding [4].

(d) We have demonstrated how Archimedes used repetition in his estimate of 𝜋. He started with

𝑛 = 6 and stopped at 𝑛 = 96. He was justified in doing so, as we have seen the upper and

lower bounds converge, as shown in Figure 11.

(e) We cheated when we used the trigonometric half-angle formulae. Archimedes did not have

them, but he used right-angled triangles in a semi-circle and leveraged his knowledge of

similar triangles and Pythagoras’ theorem. We use a slightly different approach, considered

next, to get the results he did, without using trigonometry.

The angle bisector theorem

Without using the half-angle formulae of trigonometry, howcanwe successively obtain expressions

for the values of 𝑐(𝑛) and 𝐶(𝑛) as we halve the angles and double the sides each time? We have to

rely on something called the angle bisector theorem from geometry.

This derivation might seem tedious, but it is closer to what Archimedes did in order to establish

the recurrence relation that tied the current value to the previous value.

Figure 14: The angle bisector theorem. The relative lengths of the two segments that a triangle’s side
is divided into by a line that bisects the opposite angle equals the relative lengths of the other two
sides of the triangle, as shown on the diagram.
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Referring to Figure 14, if the line 𝑂𝐶 bisects the angle 𝐵𝑂𝐴, then the base 𝐴𝐵 is divided in the

same ratio as the corresponding sides. This means

𝐴𝑂
𝑂𝐵 = 𝐴𝐶

𝐶𝐵 which in turn means that

𝑎
𝑏 =

𝑝
𝑞

(14)

Applying the theorem to a thirty-sixty-ninety right-angled triangle, we get Figure 15 shown below.

Figure 15: The angle bisector theorem applied to a thirty-sixty-ninety right triangle. The ratio of 𝑎 to 𝑏
is the same as the ratio of 2 to√3.

Since 𝑂𝑄 is one unit,

𝑎 + 𝑏 = 1. (15)

Also,
𝑎
𝑏 = 2

√3

𝑎 = 2
√3

𝑏

= 2√3
3 𝑏

(16)
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Substituting for 𝑎 from Equation (16) into Equation (15) gives us

2√3
3 𝑏 + 𝑏 = 1

[2
√3
3 + 1] 𝑏 = 1

[2
√3 + 3
3 ] 𝑏 = 1

𝑏 = [ 3
2√3 + 3

]

= [ 3(2√3 − 3)
(2√3 + 3)(2√3 − 3)

]

= [3(2
√3 − 3)

(12 − 9) ]

= 2√3 − 3

(17)

Pythagoras’ theorem, applied to right triangle 𝑃𝑄𝑆, gives us

𝑃𝑆2 = 𝑆𝑄2 + 𝑄𝑃2

𝑟2 = 𝑏2 +√3
2

= 𝑏2 + 3 ⟹ 𝑟 = √𝑏2 + 3

(18)

Now,

𝑏2 + 3 = [2√3 − 3]
2
+ 3

= 12 − 12√3 + 9 + 3

= 12(2 − √3)

(19)

Therefore,

𝑟 = √𝑏2 + 3

= √12(2 − √3)

= 2√6 − 3√3

(20)

Putting together Equations (17) and (19), we get

sin 15° = 𝑏
𝑟

= 1
2 [

2√3 − 3

√6 − 3√3
]

≈ 0.2588190451025207
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And we are done! I do not intend to pursue this tedious process any more. I have pressed on thus

far only because I wanted to convey to you an appreciation of the travails that Archimedes must

have undergone without any of the modern mathematical conveniences we enjoy, like calculators

and computers. Gauging by the heroic effort he put in to estimate 𝜋, Archimedes must have loved

mathematics very dearly.

The fact that we have obtained the same value of sin 15° by using two different approaches—one

using trigonometry, and the other using pure geometry— illustrates the richness that lies ahead,

waiting to be explored by some intrepid student of mathematics.

Digression: Denesting Surds

But wait a minute. How do we simplify expressions containing square roots within square

roots? Such expressions are called nested surds. Is there an easy way to confirm—without using

calculators—that the two results we got are indeed the same number? How do we unpack surds

within surds? Because calculators have finite precision, how do we know that the two exact

expressions involving surds, on either side of the equality sign below, are indeed exactly equal?

1
2√2 − √3

?
= 1
2 [

2√3 − 3

√6 − 3√3
] or more simply that

√2−√3
?
= [ 2√3 − 3

√6 − 3√3
]

We want to reduce nested surds to their simplest forms so that two dissimilar surds may be

compared and declared equal if the they both equal another, possibly third, simpler surd.

Fortunately, there are many resources on the Web, from book chapters, to dedicated web pages, to

video presentations, that deal with this interesting, but seldom discussed topic—denesting surds

[7–10]. Choose any one, or even all, references to learn from, and then tackle the above problem.

For starters, I will go through how to denest√6− 3√3. Let

√6− 3√3 = √𝑎 − √𝑏 where 0 ≤ 𝑏 ≤ 𝑎. (21)

We now square both sides:

(√6 − 3√3)
2

= (√𝑎 − √𝑏)
2

6 − 3√3 = 𝑎 − 2√𝑎𝑏 + 𝑏

Equating like terms, we get

𝑎 + 𝑏 = 6; and

√27 = √4𝑎𝑏
4𝑎𝑏 = 27.

(22)

Copyright © 2006–2024, R (Chandra) Chandrasekhar 22

https://undergroundmathematics.org/thinking-about-algebra/nested-surds/solution


The Pi of Archimedes

Obtaining 𝑏 in terms of 𝑎 from Equation (22), and substituting, we get

4𝑎(6 − 𝑎) = 27
−4𝑎2 + 24𝑎 = 27

4𝑎2 − 24𝑎 + 27 = 0
(2𝑎 − 3)(2𝑎 − 9) = 0

𝑎 = 3
2
or 𝑎 = 9

2

Because 𝑎 ≥ 𝑏, we choose 𝑎 = 9
2
and 𝑏 = 3

2
.

Substituting into Equation (21), we get

√6− 3√3 = √
9
2 −√

3
2 =

3 − √3
√2

= 3√2 − √6
2 .

Note that there are no nested square roots on the right hand side (RHS). The salient point is that,

since we are dealing with surds, we should get identical, closed form, exact expressions for both

√2−√3 and [ 2√3−3

√6−3√3
] without using decimals. And, indeed we do:

√2−√3 = [ 2√3 − 3

√6 − 3√3
] =

√6 − √2
2 .

And that takes some effort, using paper and pencil, or less effort, using software like Geogebra

[11]😉 .

The moral of this section is that 𝜋may be approximated as a potpourri of expressions involving

surds. Imaginemathematics as a kitchen blender intowhich selected terms involving surds are put

in as ingredients and blended into a smoothie that tastes like 𝜋! I find that image mind-boggling.

This completes the modern guided tour of the method Archimedes—used to estimate 𝜋—that I

had envisaged for this blog. We now turn to the question of its oft-quoted value.

Is π really 22/7?

Is 𝜋 really equal to
22
7
, as has been drummed into our heads at school?

The answer is a qualified “Yes and No”.

“Yes”, because, thanks to Archimedes,
22
7
is an overestimate for 𝜋 that has survived for nineteen

centuries, and served us well in all this time (see Equation (5)). Whenever more accuracy is

desired, we can always press into service a slightly better rational approximation, like
355
113

.

“No”, because an irrational number like 𝜋 can never be expressed exactly within the confines of

a finite numerical representation. Consequently, we use rational approximations, or a decimal

representation, at the accuracy desired for our practical purposes.

Philosophically speaking, 𝜋 can only be represented, truly as it is, by a symbol, not by digits.
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Geometrymight have given birth to𝜋, but it does not confine𝜋 exclusively. Thiswondrous number

is a free citizen of all mathematics, and can roam the entire domain. Howmathematicians became

aware of the ubiquity of 𝜋, and what riches have accrued as a result, will engage us in our second

blog on 𝜋, entitled “The Wonder that is Pi”.

To explore further

A well-written, accessible article on the subject of this blog is available online: “How Archimedes

showed that pi is approximately 22 by 7” [3]. I urge you to read it.15 You will then appreciate for

yourselves how arduous the process must have been in an age without the benefit of:

1. Trigonometry; he used geometry and the theorem of Pythagoras instead;

2. Algebra; he used geometry and the ratios of the lengths of well-known triangles;

3. Decimal numbers for division; he used fractions instead;

4. Calculators for evaluating square roots.

Another recommended online article is Archimedes and Pi [2] at a website interestingly named

https://nonagon.org/.

There is an online Wolfram demonstration [12] showing how estimates of 𝜋 vary with the areas

of the inscribed and circumscribed polygons, as 𝑛 changes. I have used the perimeters, 𝑐(𝑛) and
𝐶(𝑛), rather than the areas 𝑎(𝑛), and 𝐴(𝑛), in this blog.

Another article on Archimedes’ estimation of𝜋 is available on this PBS website [13]. Unfortunately,

the interactive demonstration, using Macromedia Flash is no longer live.16

This online article [14] recounts, with facsimile reproductions from Archimedes’ own writings,

how he went about estimating 𝜋.

The fourteenth of March each year is celebrated as Pi Day, and in 2024, this popular article by the

eminent mathematician, Steven Strogatz, appeared in the New York Times [15]. It is a rewarding

read.
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