
Pattern Matching and Substitution in bash

R (Chandra) Chandrasekhar

2023-02-28 | 2023-03-12

The arcane powers of the bash shell

The programs, sed, awk, grep, and perl have been the traditionally used tools for matching

and manipulating lines and strings in Linux. But the bash shell [1], [2] also embodies powerful

pattern-matching and substitution capabilities [3]–[6], many of which are relatively unknown and

unused. This blog gives practical examples for using these powerful, but somewhat understated

features, to achieve common tasks efficiently and tersely, directly from within bash itself.

Extended globbing

Globbing is the unflattering term—an abbreviation for global—used to denote an operation to

extract files satisfying certain conditions [7]–[9]. It is applicable also to the bash command line.

For our purposes, depending on the sort of matching we perform, it will be sometimes necessary

to set shopt -s extglob after the shebang line [10].

Parsing filenames

A fully qualified filename consists of a path, a basename, and an extension. While not all

filenames are encountered in their full glory, it helps to decompose any given filename into its

constituent parts to help with housekeeping functions on a machine running bash—for example,

to facilitate searching, sorting, renamimg, and other file-related functions.

The canonical filename

A canonical filename should comprise these components:

1. a path with the forward slash / as the separator1 between elements denoting the path;

2. a filename in two parts:

(a) comprising a basename which appears immediately after the last / character; and

(b) a file extension that occurs after the basename and immediately after a . or period

character.

1The separator in Microsoft Windows is a backslash, \, but since we are discussing bash, running on Linux
machines, it is the forward slash, /, that is our character of interest.

https://www.thefreedictionary.com/arcane
https://www.gnu.org/software/sed/
https://www.grymoire.com/Unix/Awk.html
https://www.gnu.org/software/grep/manual/grep.html
https://learnbyexample.github.io/learn_perl_oneliners/line-processing.html
https://www.gnu.org/software/bash/
https://en.wikipedia.org/w/index.php?title=Glob_(programming)&oldid=1133836865
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://www.thefreedictionary.com/canonical

Pattern Matching and Substitution in bash

/my_path/is/quite/long/basename.ext is a canonical filename—hereafter referred to as

fullname—where the above-named structural elements are as follows:

1. path: /my_path/is/quite/long
2. basename: basename
3. extension: ext
4. filename: basename.ext

Parsing the fullname

Our next task is to dissect the canonical filename into its above components using pattern-matching

in bash:

#!/bin/bash
file-parse.sh
shopt -s extglob

fullname=”/my_path/is/quite/long/basename.ext”
echo ”fullname is $fullname”

#
Extract $path
Approach from the right until the _first_ `/`
is encountered and throw away everything
from the _right_ end up to and including that `/`.
#
path=”${fullname%/*}”
echo ”path is $path”

#
Extract $filename
Approach from the left until the _last_ `/` character
is encountered and throw away everything
from the _left_ end up to and including that `/`.
#
filename=”${fullname##*/}”
echo ”filename is $filename”

#
Extract $ext
Approach from the _left_ until the _last_ `.` character
is encountered and throw away everything
from the _left_ end up to and including that last `.`.
#
ext=”${fullname##*.}”
echo ”extension is $ext”

Copyright © 2006–2023, R (Chandra) Chandrasekhar 2

Pattern Matching and Substitution in bash

#
Extract $basename
This requires trimming strings from both
the left and the right of $fullname
and requires _two_ steps if we start with $fullname.
#
Instead, we use $filename, which is already available,
and excise the extension to get $basename.
#
For this, we approach from the _right_ until we encounter
the _first_ `.` character and throw away everything
from the _right_ up to and including that first `.`.
#
basename=”${filename%.*}”
echo ”basename is $basename”

Mnemonics behind the # and % symbols

The use of the symbols # and % in the pattern matching expressions might seem arbitrary or

whimsical. For a start, they do not conform to the usual delimiters ^ and $ for the beginning and

end of a line or string.

One other point to keep in view constantly is to avoid looking at bash pattern matching solely

through the lens of regular expressions [11]–[13]. There are some similarities, but the two are not

identical.

So, what’s the dope on # and %? These two symbols have been chosen for their near universal

usage as a prefix and suffix respectively. It is customary to write #1 for “number one”, and 20%
for “twenty percent”, where you will notice that the # is written as a prefix and the % is written as

a suffix to the number.

In the bash pattern-matching we have encountered so far, we are matching elements in a string,

and throwing away the matching portion, using some known delimiter. When we match from the

left, we use # because it is a prefix. Likewise, when we match from the right, we use %, which is

a suffix. In both cases, we stop at the first match from whichever direction we are starting the

search for the match. The single # and % therefore denote lazy matching.

The symbol ## means we deal with the longest substring from the left that matches: a case of

greedy matching. The same applies to %%where we stop at the longest matching substring from

the right.

If you look carefully, you will see that—apart from the anchor character(s)—we do not care about

what we are throwing away. We can therefore denote these “don’t care” characters with the *,
which is a wildcard that denotes zero or more characters. What is important to us, though, is the

delimiter that anchors the string that we are trimming off.

Copyright © 2006–2023, R (Chandra) Chandrasekhar 3

https://www.regular-expressions.info/tutorial.html
https://www.ldoceonline.com/dictionary/the-dope-on-somebody-something
https://stackoverflow.com/questions/2301285/what-do-lazy-and-greedy-mean-in-the-context-of-regular-expressions
https://www.geeksforgeeks.org/perl-greedy-and-non-greedy-match/
https://en.wikipedia.org/wiki/Wildcard_character

Pattern Matching and Substitution in bash

This delimiting character will be placed to the right of the *when used with # or ##, and it will be

placed to the left of *when used with % or %%. You will notice that the / and . characters obey

this simple, logical placement rule in the code above. In both cases, the anchoring delimiter is

also trimmed off.

To summarize:

1. When we use # or ##, we discard a substring to the left of the anchor; and

2. When we use % or %%, we discard a substring to the right of the anchor.

Minefields to beware of

The pattern-matching capabilities in bash throw up unexpected results when the assumptions

made above are not fulfilled. The structure of the fullname is one such. What happens if our

assumptions are false?

Filenames without an extension

There are occasions when, for a variety of reasons, filenames might not have extensions. In such

cases, we might rightfully expect the extension to be a null or empty string. But is that what

happens in practice? Let us try a simple experiment. You could fire up a bash terminal and run

what follows interactively.

#!/bin/bash
shopt -s extglob
fullname=$HOME/myPDFfile
ext=”${fullname##*.}”
echo ”Extension is $ext”

The result is:

Extension is /home/<redacted>/myPDFfile

Surely, you did not expect the extension to be the fullname of the file. Yet, that is what we get.

Though unexpected, is it yet logically correct?

Imagine you are moving from left to right until you hit the last . character. When you do, you

discard whatever is to the left of the . along with that character itself. If there is no . character,

you do not stop and you do not discard anything. So, you are left with what you started with.

But, although logical, that is not the intent. The error arises from the unfulfilled assumption

that fullname contains a dot character, followed by alphanumeric characters that denote the

extension.

One way to overcome this issue is to test for a period or dot character in the original fullname
string [14]–[16]. If there is no . character, we set the extension to the empty string. Otherwise, we

set it to what we get by the pattern-matching we have discussed. The corrected routine for the

extension should thus run:

Copyright © 2006–2023, R (Chandra) Chandrasekhar 4

Pattern Matching and Substitution in bash

#!/bin/bash
ext.sh
shopt -s extglob

fullname=”/path/myPDFfile”

if [[”$fullname” =~ \.]]
then

echo $?
ext=”${fullname##*.}”

else
echo $?
ext=””

fi
echo ”Extension is $ext”

Note that the =~ sign is a regular expression operator that has been inducted from perl into bash
[17]. The [[...]] expression returns a 0 for true and a 1 for false, which may sound contrary

to expectations, but that is the correct behaviour in bash. This may be seen by pre-pending echo
$? to each branch of the if conditional.

Moreover, when matching, the left side is a string that should be double quoted to avoid errors,

while the right side is a regular expression, or a constant that is either escaped as in \., or in
single quotes, like '.' [15]. If a plain . is used, with no “protection”, it will match any single

character in accordance with regex rules, and we risk getting the wrong result. It is attention to

every small detail that ensures success with bash scripts. You also learn patience on the way. 😉

Filenames with multiple dot characters

I have encountered occasions where the fullname of a file containsmultiple . characters. In such

cases, we must adopt a convention that the extension is what occurs to the right of the rightmost

dot character. We will avoid pathological cases like a filename ending with a . character. If these

additional assumptions hold, our pattern-matching for the extension will return the correct result.

Filenames without a path

Before attempting to extract a path, we must check for the presence of a / in the fullname
string. Otherwise, we risk getting the same errors as with missing extensions. The following script

should be self-explanatory by now. Again, note that we either need to make the / character a

literal, enclosed by single quotes, or we must escape it with a backslash, \. Note that this time, the

forward slash is enclosed by single quotes; I find \/ both inelegant and somewhat perplexing.

#!/bin/bash
path.sh
shopt -s extglob

Copyright © 2006–2023, R (Chandra) Chandrasekhar 5

https://stackoverflow.com/questions/6834487/what-is-the-dollar-question-mark-variable-in-shell-scripting
https://stackoverflow.com/questions/6834487/what-is-the-dollar-question-mark-variable-in-shell-scripting

Pattern Matching and Substitution in bash

fullname=”myPDFfile.pdf”

if [[”$fullname” =~ '/']]
then

echo $?
path=”${fullname%/*}”

else
echo $?
path=””

fi
echo ”Path is $path”

The generalized filename parser

The revised file for parsing a filename into its components therefore needs to be augmented with

these tests if it is to be robust and generic [18]. Note also that if no input is given, there can be no

meaningful output; so we have to test that there is at least one command-line argument.

Because filename parsing is a task that I have had to do repeatedly in different bash scripts, I

decided that the final version of the script should find expression as a bash function rather

than as a script.

Along the way, I encountered pitfalls and errors, too many to recount. Suffice it to say that

my helper and guide in the debugging process has been the Shellcheck utility [19]. The file

parse_filename.sh2 is made available here for completeness without any warranties whatso-

ever. The usual disclaimers about software merchantability are implicit! 😉

Prettifying non-standard filenames

We have now concluded the first part of processing a filename, and are ready to proceed to the

second part, which is prettifying a filename. Although filenames containing spaces, tabs, and

non-alphanumeric characters can be processed in Linux—when enclosed by single quotes—the

natural etiquette in Linux file naming is not to use such non-standard characters.

But what happens if we are bequeathed files having such names? Renaming them one-by-one,

by hand, will be laborious and even impractical. How may we automate the renaming of such

files—to result in filenames that are both meaningful and Linux-friendly? That is what will occupy

us for the rest of this blog.

2Beware that although I have liberally replaced characters unsuited to Linux filenames with a hyphen or dash,
later in this blog, the - character cannot be used in the names of variables, functions, and the filenames of functions
in bash.

Copyright © 2006–2023, R (Chandra) Chandrasekhar 6

https://www.shellcheck.net/
scripts/parse_filename.sh
https://core.ac.uk/download/pdf/267973227.pdf
https://www.thefreedictionary.com/prettifying

Pattern Matching and Substitution in bash

From cacophony to harmony

The original file naming convention in Linux is that there will be no spaces or other non-

alphanumeric characters, except for the underscore character _ in a filename3 [20]. This is because

spaces are used as input field separators (IFS) to break up a string into its components: something

known as word splitting [21].

But not all filenames respect this nomenclature of alphanumeric plus underscore characters

alone. What if you encountered a file named so: El??Condor _Pasa%^!.mp3. How would

you sanitize it into something that could be easily processed by Linux when supplied as an

argument?

This set me developing a simple script to convert all non-compatible characters into acceptable

characters so that the end result would be a sanitized, Linux-compatible filename that still retained

some of its meaning. Here is my thought process as an algorithm:

1. Retain underscores _ unchanged;

2. Replace every other non-alphanumeric character by a -; and
3. Replace strings of consecutive - characters from the previous step by a single - character.

4. Neither the first nor the last character of the modified filename shall be a - character.

The standard and most obvious way to do this is by using regular expressions and a tool such

as sed, awk, or perl. Moreover, the POSIX character classes such as [:space:], [:blank:],
[:punct:] hold the key to concisely including all characters that need to be substituted with

dashes. This was the trajectory I followed initially.

Using sed to sanitize a filename

How might the unusual filename (or string)

El??Condor _Pasa%^!.mp3

which contains three spaces, and five punctuation characters, be sanitized using sed4?

Typically, sedworks on text within a file. But we may also pass strings to sed as literals rather

than an input file. Rather than stumble through the tedious path I took to success, I record below

the final sed one-liner that I assembled. Note that we will henceforth use only the basename of

this filename in all examples.

sed -r ”s/([[:space:]]|[[:punct:]])+/-/g” «< 'El??Condor _Pasa%^!'

which gives the result:

El-Condor-Pasa-
3The - character (dash or hyphen) assumes many roles: as the standard input and standard output, as a prefix to

an option for commands, as a range specifier in regular expressions like [a-z], etc. So, a filename should not start or
end with the - character; its position elsewhere in a filename should not cause problems.

4The underscore does not count as a punctuation character because it is not replaced.

Copyright © 2006–2023, R (Chandra) Chandrasekhar 7

https://mywiki.wooledge.org/WordSplitting?highlight=%28spaces%29%7C%28word%29%7C%28splitting%29
https://www.grymoire.com/Unix/Sed.html
https://tldp.org/LDP/abs/html/awk.html
https://perldoc.perl.org/perlretut
https://www.regular-expressions.info/posixbrackets.html
https://www.baeldung.com/linux/sed-with-string
https://www.baeldung.com/linux/sed-with-string
https://catonmat.net/sed-one-liners-explained-part-one
https://en.wikipedia.org/wiki/Standard_streams

Pattern Matching and Substitution in bash

Note thatmultiple spaces and punctuation characters have been replaced by single hyphens or

dashes. The + sign in the expression confers this behaviour. The fact that we want to change both

spaces and punctuation is the reason for the | alternation sign which might be loosely looked

at as a logical or. The g parameter at the end (for global) means that all such occurrences will

be substituted. The [[:space:]] and [[:punct:]] incantations are called POSIX character

classes [11]. The option -r is given to sed to confer the regular expression matching behaviour

we are after. And the «< allows an input to be given immediately to sed from the command line

rather than from a file. The s refers to a substitution.

But, are we satisfied with our result? Not really, on two counts:

1. Wewant to retain the underscore _ character unchanged, if andwhen it occurs in the original

string. An underscore in our original string has disappeared.

2. We do not want a terminal hyphen in the modified filename, as in this case.

The second is easier to fix first. We will resort to the start-of-line anchor ^ and the end-of-line

anchor $ to eliminate (possible) initial and terminal hyphens. Since sed can work consecutively

on the original string, or its modified variant, we can simply chain the three substitutions using

pipes so:

sed -E ”s/([[:space:]]|[[:punct:]])+/-/g” «< 'El??Condor _Pasa%^!' | \
sed ”s/^-//” | sed ”s/-$//”

to get

El-Condor-Pasa

almost as desired. The -E option is POSIX-compliant and needed to deal with extended regular

expressions; in GNU sed it is synonymous with the -r option. The | character indicates that the

input for the second and third sed substitutions is the output from the previous sed command.

The + denotes multiple consecutive instances of spaces and punctuation characters and the g
denotes performing the substitution globally, i.e., as many times as the conditions require. The //
means that there is no replacement character.

The requirement to pass underscores unchanged is more serious, because we need to modify the

first sed replacement. Because the [[:punct:]] class also includes the underscore character, it

is a sticky business to keep all the underscores but replace every other punctuation symbol by a

dash. In fact, it negates the very notion and convenience of a POSIX character class.

What we want is some operation like a set difference, for which the regex syntax is not available

for sed. One could enumerate all punctuation symbols and exclude only _ from that list, and use

that class instead of [[:punct:]], but this approach strikes me as particularly ham-fisted.

A better and more felicitous way is to invert the requirement and preserve the alphanumeric and

underscore characters alone, and replace everything else by a dash:

Copyright © 2006–2023, R (Chandra) Chandrasekhar 8

https://www.regular-expressions.info/posixbrackets.html
https://www.regular-expressions.info/posixbrackets.html
https://www.gnu.org/software/sed/manual/html_node/Command_002dLine-Options.html
https://mathworld.wolfram.com/SetDifference.html
https://idioms.thefreedictionary.com/Ham+Fisted

Pattern Matching and Substitution in bash

sed -E ”s/([^A-Za-z0-9_])+/-/g” «< 'El??Condor _Pasa%^!' | \
sed ”s/^-//” | sed ”s/-$//”

which gives:

El-Condor-_Pasa

Although it looks awkward—having a - followed by a _—this is exactly the desired output given our

transformation rules. Note that the ^ character is used in the first sed command as a negation of a

character class, and in the second sed command as a start-of-string anchor. It is this overloading

of meanings on a single symbol that leads to difficulties in understanding such expressions.

Can it be done in bash?

But what about the nagging refrain, “Why not do it all in bash itself, using pattern matching”? So,

rather than considering how to do this in perl, etc., I hacked my way through several iterations

of trying to perform the substitution in bash itself.

Pattern-matching, substitution, and substring removal

The expression [A-Za-z0-9_] has a rather fortuitous abbreviation as a POSIX character class

in bash: it is denoted by [[:word:]]. The pattern-matching/replacement expression in bash
therefore becomes:

#!/bin/bash
shopt -s extglob
#
filename='El??Condor _Pasa%^!'
#
The character class `[:word:]` includes all
alphanumeric characters and the underscore.
`^[:word:]` is the negation of this condition.
So, we replace _all_ non-alphanumeric characters
and non-underscores with the dash.
#
The `+` sign though placed at the beginning rather than the end
has the same meaning as in the `sed` expression.
The `//` after $filename denotes multiple replacements
just like the terminal `g` in the `sed` substitution expression.
#
newname=”${filename//+([^[:word:]])/-}”
#
We then trim off the first character in $newname in case
it begins with a `-` character.
Nothing happens if the first character is not a `-`.

Copyright © 2006–2023, R (Chandra) Chandrasekhar 9

Pattern Matching and Substitution in bash

#
newname=”${newname/#-}”
#
Next, we trim off the last character in $newname
if it matches a dash.
Nothing happens if the last character is not a `-`.
#
newname=”${newname%-}”
echo ”$newname”

It bears noting that in the last two expressions:

(a) there is no wildcard character * before the - in the first substring expression;

(b) there is no wildcard character * after the - in the second substring expression;

(c) consequently, in both cases, we are matching a single initial or terminal- character, with no

ill effects if either or both are missing; and

(d) we may assign the possibly truncated variable newname to itself.

We have accomplished what we set out to do with the filename. The absence of the * in the

expression newname=”${newname%-}”hasmorphed the patternmatching and substring removal

we used for parsing filenames into a robust, removal of a terminal -, without the need to test if it

is the last character in the string. To demonstrate the terseness of this approach, I give below the

same operation, with a slightly longer syntax, that is also available to us in bash.

Using substring extraction

The syntax for substring extraction in bash is ${parameter:offset:length}where offset is

measured starting from 0 at the extreme left [3], [6], [22].

#!/bin/bash
shopt -s extglob
#
filename='El??Condor _Pasa%^!'
#
The character class [:word:] includes all
alphanumeric characters and the underscore.
^[:word:] is the negation of this condition.
So, we replace all non-alphanumeric characters and non-underscores
with the dash.
#
newname=”${filename//+([^[:word:]])/-}”
#
Extract the first character in $newname and test if it is `-`.
If so, remove it; else do nothing.

Copyright © 2006–2023, R (Chandra) Chandrasekhar 10

Pattern Matching and Substitution in bash

Indexing starts with zero.
#
firstchar=”${newname:0:1}”
if [[”$firstchar” == '-']]
then

newname=”${newname:1}”
fi
echo ”$newname”
#
Extract the last character in $newname and test if it is `-`.
If so, remove it; else do nothing.
#
lastchar=”${newname: -1}”
if [[”$lastchar” == '-']]
then

newname=”${newname::-1}”
fi
echo ”$newname”

The points to especially note here are:

(a) The expression ”${newname:0:1}” denotes the substring of length 1 starting from the

beginning of the string $newname is obviously the first character in that string. It may also

be written as ”${newname::1}”.

(b) There is a space between the : and the - in the expression ”${newname: -1}”. This

space is inserted to avoid ambiguity with another expression of the form ${parameter:-
word}which has a different function. The -1 in ”${newname: -1}” denotes the leftmost

character in the string. Another way to write this is as ”${newname:0-1}” [23]. Still another
equivalent expression is ”${newname:(-1)}”.

(c) The final idiom used above is ”${newname::-1}”, which is shorthand for ”${newname:0:-
1}”. This operation strips off the final character in the variable ”${newname}”. Because it
is positional in nature, rather than the result of a pattern match, we have to test whether the

terminal character is indeed a -.

(d) We could also have used the =~ sign for these tests since we are matching a single character.

Nevertheless, it is better programming discipline to test for equality when dealing with a

single character, as it is more specific.

It should be clear that the first version of substring extraction is clearer, less verbose, and less

prone to error than the second one.

Copyright © 2006–2023, R (Chandra) Chandrasekhar 11

Pattern Matching and Substitution in bash

Wrapping it all up

Because the simple filename cleanup attempted above is likely to find repeated use, it seemed sens-

ible to bundle these latter manipulations into another function called prettify_filename.sh.
Along with parse_filename.sh, these two functions may be used from within a third script file

as long as they are invoked with a source command. The script MyFileRename.sh is an example

of how these two functions may be used together. This triad of files, then, gives a complete set of

tools to automate the renaming of problematic filenames in Linux.

The parse_filename and prettify_filename functions invoke certain environment variables

to allow terminal output in colour. That functionality comes from a third bash function called

colorize_terminal.sh. My $HOME/.bashrc file calls this function through the line

source ”$HOME”/bin/colorize_terminal.sh

to make coloured terminal output available to all scripts.

To explore further

The interested reader is referred to the official documentation online for a comprehensive ex-

planation of the dazzling features of parameter expansion [24] and substring removal [25] in bash.
For an admirable summary of features like parameter expansion, do also visit the clear and

comprehensive BashGuide website.

If you are familiar with bash but require an aide-mémoire for some aspect of string matching or

manipulation, the section with the heading “Recommended Shell resources” is the best place to

start your search [26]. It contains a wealth of authoritative links that will speedily dispel your

doubts, not to speak of saving you time.

Feedback

Please email me your comments and corrections.

A PDF version of this article is available for download here:

https://swanlotus.netlify.app/blogs/pattern-matching-in-bash.pdf

References

[1] Cameron Newham and Bill Rosenblatt, Learning the bash shell, 3rd ed. O’Reilly, 2005.

[2] T. Ryder, Bash quick start guide: Get up and running with shell scripting with bash. Packt,

2018.

[3] Mendel Cooper, ‘Parameter substitution’, Mar. 10, 2014. Available: https://tldp.org/LDP/abs
/html/parameter-substitution.html. [Accessed: Mar. 04, 2023]

[4] Mitch Frazier, ‘Pattern matching in bash’, Apr. 15, 2019. Available: https://www.linuxjournal
.com/content/pattern-matching-bash. [Accessed: Feb. 28, 2023]

Copyright © 2006–2023, R (Chandra) Chandrasekhar 12

scripts/prettify_filename.sh
scripts/parse_filename.sh
scripts/MyFileRename.sh
scripts/colorize_terminal.sh
https://www.gnu.org/savannah-checkouts/gnu/bash/manual/bash.html#Shell-Parameter-Expansion
https://mywiki.wooledge.org/BashGuide/Parameters
https://www.thefreedictionary.com/aide+memoire
https://wiki.bash-hackers.org/start#recommended_shell_resources
mailto:feedback.swanlotus@gmail.com
https://swanlotus.netlify.app/blogs/pattern-matching-in-bash.pdf
https://tldp.org/LDP/abs/html/parameter-substitution.html
https://tldp.org/LDP/abs/html/parameter-substitution.html
https://www.linuxjournal.com/content/pattern-matching-bash
https://www.linuxjournal.com/content/pattern-matching-bash

Pattern Matching and Substitution in bash

[5] —, ‘Pattern matching’, Sep. 26, 2022. Available: https://www.gnu.org/software/bash/manual
/html_node/Pattern-Matching.html. [Accessed: Mar. 04, 2023]

[6] Cameron Newham and Bill Rosenblatt, ‘String operators’, Jan. 26, 1998. Available: https:
//www.oreilly.com/library/view/learning-the-bash/1565923472/ch04s03.html. [Accessed: Mar.

04, 2023]

[7] Wikipedia authors, ‘Glob (programming)’, Jan. 15, 2023. Available: https://en.wikipedia.org
/w/index.php?title=Glob_(programming)&oldid=1133836865. [Accessed: Feb. 28, 2023]

[8] Gilles Quénot, ‘Unix. Run script across multiple dirs on specific files, where pathname has

regex’, Mar. 05, 2023. Available: https://unix.stackexchange.com/a/738684/11610. [Accessed:
Mar. 05, 2023]

[9] —, ‘History of bash globbing’, Jun. 10, 2014. Available: https://unix.stackexchange.com/que
stions/136353/history-of-bash-globbing. [Accessed: Mar. 05, 2023]

[10] Krzysztof Kowalczyk, ‘Extended globbing’, Jan. 30, 2023. Available: https://www.progra
mming-books.io/essential/bash/extended-globbing-7c7bf6bd68b64f0e919716228ef9f3df.
[Accessed: Mar. 06, 2023]

[11] Jan Goyvaerts, ‘Regex tutorial—POSIX bracket expressions’, Nov. 22, 2019. Available: https:
//www.regular-expressions.info/posixbrackets.html. [Accessed: Mar. 05, 2023]

[12] Zach Gollwitzer, ‘Intro to bash regular expressions’, Oct. 21, 2020. Available: https://dev.to
/zachgoll/intro-to-bash-regular-expressions-4d2p. [Accessed: Mar. 05, 2023]

[13] Abhinav Tiwari, ‘How to write regular expressions?—GeeksforGeeks’, Mar. 02, 2023. Avail-

able: https://www.geeksforgeeks.org/write-regular-expressions/. [Accessed: Mar. 05,

2023]

[14] lmcanavals, ‘Test if a string has a period in it with bash’, Feb. 01, 2013. Available: https:
//unix.stackexchange.com/a/63374/11610. [Accessed: Mar. 04, 2023]

[15] Mark Byers, ‘Test for a dot in bash’, Apr. 30, 2010. Available: https://stackoverflow.com/a/27
45096. [Accessed: Mar. 04, 2023]

[16] Mark Reed, ‘Bash script pattern matching’, Jun. 22, 2017. Available: https://stackoverflow.
com/a/44688520. [Accessed: Mar. 05, 2023]

[17] Kusalananda, ‘Bash test: What does ”=~” do?’, Jan. 17, 2017. Available: https://unix.stackex
change.com/a/340485/11610. [Accessed: Mar. 04, 2023]

[18] geirha, ‘How can i use parameter expansion? How can i get substrings? How can i get a file

without its extension, or get just a file’s extension? What are some goodways to do basename

and dirname?’, Nov. 09, 2021. Available: http://mywiki.wooledge.org/BashFAQ/073.
[Accessed: Mar. 09, 2023]

[19] V. H. aka koalaman, ‘ShellCheck. Finds bugs in your shell scripts’, Mar. 12, 2023. Available:

https://www.shellcheck.net/. [Accessed: Mar. 12, 2023]

[20] J. Peek, G. Todino, and J. Strang, Learning the UNIX operating system, 5th ed. O’Reilly, 2002.

[21] lhunath aka Maarten Billemont and Greg Wooledge aka GreyCat, ‘Word splitting’. Available:

https://mywiki.wooledge.org/WordSplitting?highlight=%28spaces%29%7C%28word%29%7C
%28splitting%29

Copyright © 2006–2023, R (Chandra) Chandrasekhar 13

https://www.gnu.org/software/bash/manual/html_node/Pattern-Matching.html
https://www.gnu.org/software/bash/manual/html_node/Pattern-Matching.html
https://www.oreilly.com/library/view/learning-the-bash/1565923472/ch04s03.html
https://www.oreilly.com/library/view/learning-the-bash/1565923472/ch04s03.html
https://en.wikipedia.org/w/index.php?title=Glob_(programming)&oldid=1133836865
https://en.wikipedia.org/w/index.php?title=Glob_(programming)&oldid=1133836865
https://unix.stackexchange.com/a/738684/11610
https://unix.stackexchange.com/questions/136353/history-of-bash-globbing
https://unix.stackexchange.com/questions/136353/history-of-bash-globbing
https://www.programming-books.io/essential/bash/extended-globbing-7c7bf6bd68b64f0e919716228ef9f3df
https://www.programming-books.io/essential/bash/extended-globbing-7c7bf6bd68b64f0e919716228ef9f3df
https://www.regular-expressions.info/posixbrackets.html
https://www.regular-expressions.info/posixbrackets.html
https://dev.to/zachgoll/intro-to-bash-regular-expressions-4d2p
https://dev.to/zachgoll/intro-to-bash-regular-expressions-4d2p
https://www.geeksforgeeks.org/write-regular-expressions/
https://unix.stackexchange.com/a/63374/11610
https://unix.stackexchange.com/a/63374/11610
https://stackoverflow.com/a/2745096
https://stackoverflow.com/a/2745096
https://stackoverflow.com/a/44688520
https://stackoverflow.com/a/44688520
https://unix.stackexchange.com/a/340485/11610
https://unix.stackexchange.com/a/340485/11610
http://mywiki.wooledge.org/BashFAQ/073
https://www.shellcheck.net/
https://mywiki.wooledge.org/WordSplitting?highlight=%28spaces%29%7C%28word%29%7C%28splitting%29
https://mywiki.wooledge.org/WordSplitting?highlight=%28spaces%29%7C%28word%29%7C%28splitting%29

Pattern Matching and Substitution in bash

[22] Linuxize, ‘How to check if a string contains a substring in bash’, Jul. 19, 2019. Available: ht
tps://linuxize.com/post/how-to-check-if-string-contains-substring-in-bash/#google_vignette.
[Accessed: Mar. 04, 2023]

[23] thinker3, ‘How to get the last character of a string in a shell?’, Jul. 09, 2013. Available:

https://stackoverflow.com/a/21635778. [Accessed: Mar. 07, 2023]

[24] Chet Ramey, ‘Bash reference manual: Shell parameter expansion’, Sep. 22, 2020. Available:

https://www.gnu.org/savannah-checkouts/gnu/bash/manual/bash.html#Shell-Parameter-
Expansion. [Accessed: Apr. 05, 2023]

[25] —, ‘Parameter expansion [bash hackers wiki]’, Dec. 10, 2021. Available: https://wiki.bash-
hackers.org/syntax/pe#substring_removal. [Accessed: Mar. 05, 2023]

[26] —, ‘The bash hackers wiki: Recommended shell resources’, Mar. 05, 2023. Available: https:
//wiki.bash-hackers.org/start#recommended_shell_resources. [Accessed: Mar. 05, 2023]

Copyright © 2006–2023, R (Chandra) Chandrasekhar 14

https://linuxize.com/post/how-to-check-if-string-contains-substring-in-bash/#google_vignette
https://linuxize.com/post/how-to-check-if-string-contains-substring-in-bash/#google_vignette
https://stackoverflow.com/a/21635778
https://www.gnu.org/savannah-checkouts/gnu/bash/manual/bash.html#Shell-Parameter-Expansion
https://www.gnu.org/savannah-checkouts/gnu/bash/manual/bash.html#Shell-Parameter-Expansion
https://wiki.bash-hackers.org/syntax/pe#substring_removal
https://wiki.bash-hackers.org/syntax/pe#substring_removal
https://wiki.bash-hackers.org/start#recommended_shell_resources
https://wiki.bash-hackers.org/start#recommended_shell_resources

	The arcane powers of the bash shell
	Extended globbing

	Parsing filenames
	The canonical filename
	Parsing the fullname
	Mnemonics behind the # and % symbols

	Minefields to beware of
	Filenames without an extension
	Filenames with multiple dot characters

	Filenames without a path
	The generalized filename parser
	Prettifying non-standard filenames
	From cacophony to harmony
	Using sed to sanitize a filename
	Can it be done in bash?
	Pattern-matching, substitution, and substring removal
	Using substring extraction

	Wrapping it all up
	To explore further
	Feedback
	References

