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This is another in my series of blogs on fascinating and mathematically indispensable numbers.

It follows on from blogs on zero, one, and π, and is likely to be followed by others. It happens

that a single blog is sometimes too short to display the beauty of the subject, and I have had

to segment the story into parts. Such will be the case here. While e is less well known to the

general public than π, it is perhaps even more fundamental to all of Nature and pervades the

entire realm of Mathematics. It would indeed be difficult to discover a nook or cranny of Nature

that has not been penetrated by this omnipresent emissary of mathematical order.

Unfurling countless digits

Perversely, almost all important numbers like√2, 𝜋, 𝑒, etc., in our world are irrational. One simply

cannot predict the decimal digit sequence.

“What if I were the creator of such a virtual world, populated like ours, by irrational numbers with

unending and unpredictable digits? How would I sustain that world without an infinite memory

to hold all those countless digits?”

I would need some convenient, succinct, shorthand method by which to unfurl their countless

digits, one after the other. It might be an algorithm like a convergent infinite series or a recursive

definition or an infinite continued fraction.1

This thought is a preface to many of the fascinating numbers we will encounter in these blogs.

I am opening this blog with an abrupt exposure to the idea of exponentials, without any courteous

introduction or gentle historical note on 𝑒, which will follow soon enough though. The reason

for this is that I wanted to dispel a possible confusion between 𝑥𝑛 and 𝑛𝑥 that often exists in the

mind of the mathematical novice.

Such confusion is best dispelled using whole numbers, and ideally before 𝑒 has made its august

entrance, rather than afterward, when the door for even greater conceptual muddiness has been

thrown wide open. In this blog, I will be zig-zagging repeatedly across the same concepts in

different contexts, simply because what we are dealing with is a tad more abstract than usual.

1I later found that this link is a chapter from a draft of the book with the charmingly alliterative title Amazing and
Aesthetic Aspects of Analysis [1] where it is now chapter 8.

https://www.merriam-webster.com/dictionary/algorithm
https://en.wikipedia.org/wiki/Convergent_series
https://en.wikipedia.org/wiki/Recursive_definition
https://en.wikipedia.org/wiki/Recursive_definition
https://people.math.binghamton.edu/dikran/478/Ch7.pdf
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Bases and Exponents

We have introduced the different types of numbers in the blog The Two Most Important Numbers:

Zero and One. In that very same blog, we also introduced the idea of exponentiation, or raising

(something) to a power, as repeated multiplication. That section is very important: do take a look

at it again if it seems faint or foggy now, as some basic results from that blog are worth reviewing

at this point.

Monomial power functions

At the very outset, it is important to clear up a possible source of confusion: monomial power

functions and exponentials might look similar but are very different.

A monomial power function is a monomial 𝑎𝑥𝑛, with the coefficient 𝑎 equal to one, and the value

𝑛 being a non-negative integer, i.e.,

𝑦 = 𝑥𝑛 where 𝑛 ∈ ℕ ∪ {0} and 𝑥 ∈ ℝ. (1)

Examples are 𝑦 = 1 = 𝑥0, 𝑦 = 𝑥, 𝑦 = 𝑥2, 𝑦 = 𝑥3, etc., as shown by the graphs of these functions in

Figure 1.

The following qualitative points should be noted:

1. In each case, 𝑥 varies, but 𝑛 is constant, as defined in Equation (1).

2. When 𝑛 is even, like 0, 2, 4, etc., the graph of 𝑥𝑛 is symmetrical about the 𝑦-axis. Such a

function is called an even function, defined as 𝑓(𝑥) = 𝑓(−𝑥).

3. When 𝑛 is odd, like 1, 3, 5 etc., the graph of 𝑥𝑛 exhibits rotational symmetry about the origin

(0, 0), i.e., if the graph is rotated 180° about the origin, the graph remains unchanged. Such a

function is called an odd function, defined as 𝑓(𝑥) = −𝑓(−𝑥).

4. The graph of 𝑥0 is constant and its behaviour is anomalous when compared to others in the

family, as is apparent from Figure 1.

5. For 𝑥 ∈ [0, 1) the larger 𝑛 is, the closer 𝑥 is to 0.

6. For 𝑥 ≫ 1, the larger 𝑛 is, the steeper the graph climbs as 𝑥 increases.

7. Except for 𝑛 = 0, the graphs of 𝑥𝑛 pass through (0, 0) for all other values of 𝑛.

8. The monomial power functions are a subset of the polynomials.

9. As an exception, I have included in Figure 1 the special case of the positive non-integer power

𝑒 ≈ 2.71828, which is the subject of this blog. This was simply to show that since 𝑒 lies
between 2 and 3 its graph is sandwiched between the curves 𝑥2 and 𝑥3. It is shown as a

dashed line in Figure 1. But there ends the similarity. In fact, 𝑥𝑒 is not a monomial power

function. Negative numbers cannot be raised to non-integer powers and still remain real

numbers. So, the domain for 𝑥𝑒 alone is restricted to [0,∞). If you find all this unhelpful or

confusing, simply ignore it for now.
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Figure 1: Monomial power functions of the form 𝑥𝑛 where the 𝑥 is the variable and 𝑛 is the power. The
curve for 𝑛 = 𝑒, which is not an integer, is an exception, shown as a dashed line. Its curve lies between
those of 𝑛 = 2 and 𝑛 = 3. Note that all curves in this family pass through the origin (0, 0).
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Exponentials

We now consider the second family of functions which might look like the monomial power

functions but are really a bird of a different feather. The exponentials are generally defined as:

𝑦 = 𝑎𝑥 where 𝑎 ∈ ℝ; 𝑎 > 0; 𝑎 ≠ 1; and 𝑥 ∈ ℝ. (2)

Note that the value of 𝑎 is constant whereas 𝑥 varies. To keep matters simple, we will not consider

the case of 0 < 𝑎 < 1 here. Moreover, for our purpose of comparing the behaviour of graphs of

𝑛𝑥, we have restricted the definition to be:

𝑦 = 𝑛𝑥; where 𝑛 ∈ ℕ; 𝑥 ∈ ℝ. (3)

Graphs of this family of functions are shown in Figure 2.

Figure 2: The exponential functions of the form 𝑛𝑥 for 𝑛 = 1, 2, 𝑒, 3, 4. The special case of 𝑒𝑥 is often
called the exponential function or the natural exponential function and is the subject of our blog. It is
shown as a dashed line. Note that all curves in this family pass through (0, 1).

The following qualitative points are noteworthy:

1. The graph for 𝑛 = 1 is anomalous and constant in value. It is shown only for completeness

and may be excluded from the definition of exponentials as in Equation (2).

2. All other graphs pass through the point (0, 1), which is characteristic of all exponentials.
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3. For 𝑥 < 0, the values of 𝑛𝑥 are greater than 0, but less than 1, and approach the asymptote

𝑦 = 0 as 𝑥 → −∞.

4. As 𝑥 increases without bound, so does 𝑦.

5. The larger 𝑛 is the steeper the rise of 𝑛𝑥 for values of 𝑥 ≫ 1.

6. The graph of 𝑒𝑥 = exp(𝑥)—shown as a dashed line—legitimately belongs to this class of

curves and shares the same domain as other exponentials. Even as 2 < 𝑒 < 3, its graph is

sandwiched between those of 2𝑥 and 3𝑥 as would be expected.

7. The exponentials are neither odd nor even functions, but their range is non-negative.

8. The roles of 𝑛 and 𝑥 have been interchanged between the monomial power functions and

the exponentials.

9. Note how the exponential functions increase exceedingly rapidly compared to the monomial

power functions.

A tabular comparison of the values of 𝑥𝑛 and 𝑛𝑥 will better reveal the large-value behaviour of

these two families of functions, as shown in Table 1.

Table 1: Exponential functions grow faster than power functions, as illustrated here for 𝑛 = 2, 3, 4, 5
and 𝑥 = 10. Except for the anomalous case of 𝑛 = 1, 𝑛𝑥 > 𝑥𝑛.

𝑛 𝑥 𝑥𝑛 𝑛𝑥

1 10 10 1
2 10 100 1, 024
3 10 1, 000 59, 049
4 10 10, 000 1, 048, 576
5 10 100, 000 9, 765, 625

Computational complexity theory

I am belabouring this distinction between the polynomials (or monomial power functions) and

the exponentials because many students, especially of computer science, are usually clueless

when they encounter the rather forbidding topic called Computational complexity theory in their

university studies.

The exponential functions tend to increase extremely rapidly compared to the polynomial functions.

Such distinctions become vital when evaluating the efficiency and execution times of algorithms

in computer science, and indeed even their solvability in finite time. Keep this difference in mind

as we navigate our way through the number 𝑒 in this and subsequent blogs.

Introduction to the number 𝑒

We are now ready to make our formal acquaintance with the number 𝑒, which stands modestly

behind 𝜋 in fame, though not in ubiquity. It appears interwoven into the very fabric of Nature

and is pivotal to mathematics, science, and engineering.
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Unlike 𝜋, though, it is relatively unknown to the public at large. Indeed, it did not have its own

symbol until relatively recently, when the Swiss mathematician Leonhard Euler assigned it the

letter 𝑒 around 1731. In fact, I wanted to call this blog, “Euler’s number 𝑒” before I realized that it

was actually discovered by Jacob Bernoulli, and that there are several other candidates for Euler’s

number besides 𝑒.

The number 𝑒 is associated with logarithms, exponential growth, exponential decay, compound

interest, the differential and integral calculus, the circular and hyperbolic functions, probability,

queueing and reliability theories, the Fourier transform, and many other areas of mathematics.

This linkage, across sub-disciplines, was not known initially, but only recognized gradually as

“things fell into place” later on.

In this sense, the history of 𝑒 is like that of, say, wavelets [2] in recent times, when it transpired

that physicists, electrical engineers, and pure mathematicians had all approached the same idea

from different standpoints and terminologies. A sound theory was only born after these diverse

viewpoints had been integrated into a coherent body of knowledge.

Among the important numbers ofmathematics, the linkage between𝜋, 𝑒 and 𝑖 is deeply entrenched.
Here is an equation, which was raised to mystical status by an American professor of mathematics,

Benjamin Peirce, who was photographed standing in front of a blackboard on which he had

written:

𝑖−𝑖 = √𝑒𝜋 (4)

He was quoted as saying, “Gentlemen, we have not the slightest idea what this equation means,

but we may be sure that it means something very important [3,4].” We will re-visit this equation

and de-mystify it later in another blog in this series.

While 𝜋 is the ratio of the circumference of a circle to its diameter, what exactly is 𝑒? And, if it is
so important, why is 𝑒 not more widely known? What properties does 𝑒 possess that make it so

useful and pervasive? We shall attempt to answer these questions and more in this and related

blogs.

The power of the exponent

Did you read that heading carefully? And did you get the pun in it?

We have already peeked into exponentiation in Table 1. Just as multiplication is a shorthand for

repeated addition so too is exponentiation a shorthand for repeated multiplication. It has been

said that human beings are not very good when it comes to comprehending the very large and

the very small.

If I gave you a stick that is one metre long and told you to divide it into one thousand equal parts,

how long would each division be? If I now told you that the same stick represented one million

divisions, and asked you to mark the first one thousandth part, where would you mark it? I am

not going to tell you, because this one is easy enough for you to figure out for yourself. It will tell

you how good or bad your ability to estimate is.

What happens if the scale is not linear but logarithmic? Let your mental cogwheels again start

turning. If you find all this too exhausting, simply look at Figure 3 below.
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Figure 3: A ruler with a linear scale on one side and a logarithmic scale on the other. Note that a
logarithmic scale cannot have a zero, by definition. On the logarithmic side, the ruler spansmore than
amillion, while it spans just eight units on the linear side. Try to get your head around this.

The power of two

There is a famous story about the person who invented the game of chess.2 The monarch of

the realm was so pleased with the game that he wanted to reward the inventor. Feeling very

expansive, he said “Ask for anything and I will give it to you.” The inventor rather diffidently

asked the king for one grain of rice on the first square of the chess board, double that number of

grains on the second, double that number of grains again on the third, and so on till all the sixty

four squares had their quotas filled [5].

The king laughed and said, “Ask for something more. You deserve it.” The inventor quietly but

persistently said, “Sire, kindly grant me what I have asked.” The king jovially asked his ministers

to fulfil the inventor’s modest request, thinking all would be well. Little did he know that the

entire granary of the kingdom would be emptied before each square received its quota of rice

grains. Can you explain why?

Grains of rice on a chess board

Let us number the squares on the chess board from 1 to 64. The first square has one grain, which

is 20. The second has two grains, which is 21 = 2(2−1). Likewise, the 𝑘th square will have 2𝑘−1

grains of rice.

The total number of grains of rice will be given by the formula:

𝑇 =
64
∑
𝑘=1

2𝑘−1 (5)

Recognizing this as the sum of a geometric series with 𝑎 = 1, 𝑟 = 2 > 1, and 𝑛 = 64, the sum 𝑇 is

2The precursor called chaturanga was invented in India around the 600s.

Copyright © 2006–2025, R (Chandra) Chandrasekhar 7

https://en.wikipedia.org/wiki/Chess
https://en.wikipedia.org/wiki/Chaturanga


The Exponential and Logarithmic Functions

Figure 4: A chessboard in a state of play.

given by [6]:

𝑇 = 𝑎(𝑟𝑛 − 1)
𝑟 − 1

= 1(264 − 1)
1

= 264 − 1
≈ 264

(6)

Assuming that 50 grains of rice have a mass of one gram, the total mass of 264 grains of rice in
metric tonnes would be

264

50×106
≈ 3.7 × 1011 metric tonnes. India’s total annual rice production in

2023–2024 was 1378.25 × 105 ≈ 1.38 × 108 metric tonnes. The inventor of chess in the seventh

century asked for more than 2, 500 times the rice produced in India in 2023–2024! He certainly

knew about the power of the exponent.

The moral of this story is that exponentials are beguilingly difficult for human beings to grasp.

That is why logarithms and logarithmic scales, which linearize exponentials, were invented.

Napier and logarithms

Logarithms were developed by an eccentric3 Scottish laird called John Napier around 1614. He

devoted twenty years of his life to achieve this. In these days of mobile phones with calculators,

3This word has both a common and a mathematical meaning. Can you reconcile the two?
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and computational packages on laptops, it is difficult to imagine a time when the tedium of

calculations impelled people to seek methods to ease the burden.

It has been suggested that Napier got the idea for performing additions in place of multiplications

from trigonometric identities such as

sin𝐴 cos𝐵 = 1
2 [sin(𝐴 + 𝐵) + sin(𝐴 − 𝐵)]

He might just as well have gotten the idea from the geometric progression 1, 𝑟, 𝑟2, 𝑟3,… 𝑟𝑛, where

each successive term is obtained bymultiplying the previous one by 𝑟: something which could

equally well have been accomplished by adding the exponent of 𝑟—which is 1—to that of the

previous term. This idea which may seem blasé to us now was profoundly significant in Napier’s

time. The laws of indices which we now know, form the basis of the idea for logarithms.

Therefore, logarithms eventually reduced multiplications to additions and exponentiations to

multiplications.4 Likewise, divisions became subtractions, and taking roots was replaced by

divisions. This reduction in the hierarchy of the arithmetic operations came with a commensurate

reduction in computational complexity. Logarithms were indeed a great labour saving device for

arithmetic operations.

Where does 𝑒 fit into all this? In quite a roundabout way, really.

Napier coined the word logarithm which means “ratio number”. The scheme he devised was to

produce a table of numbers 𝑁 against 𝐿 [7] where

𝑁 = 107(1 − 10−7)𝐿 (7)

Comparing this with the modern notation introduced by the prolific Euler, that

𝑁 = 𝑏𝐿

we find that what might correspond to the base in Napier’s logarithms was 𝑏 = (1 − 10−7) =
0.9999999, which because it is less than 1 means that his logarithms decreased with increasing

numbers. Moreover, because of the factor 107, setting 𝐿 = 0 gives 107 in Napier’s scheme whereas

in modern notation, 𝐿 = 0 gives 1 regardless of the base.

The strange thing is that logarithms to the base 𝑒, now called natural logarithms, used to be called

Napierian logarithms, although he did not use 𝑒 as the base. How did this association then arise?

4We touched upon this idea in the blog Varieties of Multiplication.
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Let us manipulate Equation (7) step-by-step as shown below to achieve the form 𝑁 = 𝑏𝐿:

𝑁 = 107(1 − 10−7)𝐿 ; divide both sides by 107

𝑁
107 = 𝑁′ = (1 − 10−7)𝐿 ; set 𝐿 = 107𝐿′

= (1 − 10−7)107𝐿′

= [(1 − 10−7)107]𝐿′

= [(1 − 1
107 )

107]𝐿′

= 𝑏𝐿′

(8)

The interesting point of the above derivation is that the number 𝑏 = [(1 − 1
107
)107], which we

may now associate with the base of Napier’s logarithms using modern convention, works out to

0.36787942297110, which is very close to
1
𝑒
≈ 0.36787944117144 [8]. This means that Napier had

unwittingly used
1
𝑒
as the base of his logarithms and was tantalizingly close to discovering 𝑒, or its

reciprocal.5 The fact that 𝑒may be the result of a limiting process sets the scene for the next stage

in the dénouement.

Compounding of interest

Banks charge or pay compound interest onmoney borrowed or invested with them. Let us assume

that a sum 𝑃 is invested with a bank that pays compound interest at the rate of 𝑟 per annum,

where 𝑟 is expressed, not as a percentage, but as a fraction between zero and one. Let this interest

be paid annually. Then at the end of one year, the money would have grown to 𝑃(1 + 𝑟). At the
end of two years, the money would have grown to [𝑃(1+ 𝑟)](1+ 𝑟) = 𝑃(1+ 𝑟)2. Thus after 𝑡 years,
the money would have grown to 𝑃(1 + 𝑟)𝑡.

In point of fact, nowadays, banks do not compute interest on an annual basis. They do so on a

daily basis. Let us assume that there are 𝑛 days in a year. Then, the interest rate per period, which

in this case is the rate per day, is
𝑟
𝑛
and there are 𝑛 periods of compounding in one year giving a

sum at the end of the year of 𝑃(1 + 𝑟
𝑛
)𝑛. Likewise, in 𝑡 years, there are 𝑛𝑡 periods of compounding

and the sum 𝑆 at the end of 𝑡 years will be:

𝑆 = 𝑃 [1 + 𝑟
𝑛]

𝑛𝑡

Now, what happens when the number of compounding periods grows? What happens if banks

do not compute interest daily but every hour, or every minute, or every second? Is there a

possible “get rich quick scheme” that involves getting paid interest every millisecond, say, or every

nanosecond?

5It is often erroneously believed that Napier used 𝑒 as the base of his logarithms, but we know that his “base” was

less than 1 and was indeed
1
𝑒
.
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Change in compounding period

Wewill write a simple program to investigate howmoney grows as the frequency of compounding

keeps increasing. The equation we will use is

𝑆 = 𝑃 [1 + 𝑟
𝑛]

𝑛𝑡
(9)

where 𝑃 is the principal, 𝑟 is the annual interest rate expressed as a fraction, 𝑛 is the number of

compounding periods per annum, 𝑡 is the number of years and 𝑆 is the sum or amount at the end of

𝑡 years.

We assign 𝑃 = 100, 𝑡 = 1, 𝑟 = 0.05, and allow 𝑛 to vary across annual, semi-annual, quarterly,

monthly, weekly, daily, and hourly compounding periods. These correspond to values of 𝑛 equal

to 1, 2, 4, 12, 52, 365, 8760 respectively.

𝑆 is computed using Equation (9) and the values of 𝑛 and 𝑆 are tabulated in Table 2. Two scripts

are provided, one in Julia, and the other in Python 3, that accomplish this. The results are shown

below in Table 2 where the last row has been added manually, as explained later on.

Table 2: Sums 𝑆 for principal 𝑃 = 100, rate 𝑟 = 0.05, and time 𝑡 = 1, with interest compounded at
intervals 𝑛 of once a year, twice a year, quarterly, monthly, weekly, daily, and hourly. The last row
shows the upper bound, with continuous compounding, yielding 𝑆 = 105.127109, as proved below.

𝑛 𝑆

1 105.000000
2 105.062500
4 105.094534

12 105.116190
52 105.124584

365 105.126750
8760 105.127095
∞ 105.127109

What do youfindnoteworthy about this? Regardless, of how frequently the interest is compounded,

the amount 𝑆 is solidly stuck around 105.127 or thereabouts. One might be forgiven for thinking

that if the interest were added with breathtaking rapidity, the sum would somehow multiply

astronomically. But alas, that is not how it works.

There is one trend that is apparent from the figures in the above table, though. The numbers

after the decimal place do increase very modestly even if they seem to bounded from above by

some number. The one way to find that number is to progress from periodic compounding to

instantaneous compounding. We derive the exact value of 𝑆 for instantaneous compounding later

in this blog in What is the amount with instantaneous interest?.

With the word instantaneous, we are on thin ice. Instantaneous velocity gave us calculus, with

its inbuilt inconsistencies of dividing by something that is close to but not quite zero. So, we

may expect something along those lines here also. Whenever instantaneousmakes its presence

onstage, zero and infinity cannot be far away. 😉
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The road to 𝑒

There are three variables apart from 𝑛 in Equation (9) for 𝑆. Let us simplify it by setting 𝑃 = 1,
𝑡 = 1, and 𝑟 = 1. Note that the last assignment means that the bank pays 100% interest per annum:

something that is very unlikely, but mathematically expedient for us! The equation for 𝑆 now
becomes

𝑆 = [1 + 1
𝑛]

𝑛
(10)

A Python 3 script called steps_to_e.py evaluates Equation (10) at logarithmic intervals and its

results are tabulated below:

n e
-----------------------------
1 2.00000000000000000
10 2.59374246010000231
100 2.70481382942152848
1000 2.71692393223559359
10000 2.71814592682492551
100000 2.71826823719229749
1000000 2.71828046909575338
10000000 2.71828169413208176
100000000 2.71828179834735773

The values are suggestive of convergence, but it is not rapid. The limit is the historically named

number 𝑒. A check with Wolfram Alpha gives the value of 𝑒 as 2.71828182845904524 to seven-

teen decimal places.

We can also countercheck with SymPy, the Python library for symbolic mathematics, by running

the script below:

from sympy import *

n = symbols(”n”)
S = limit((1 + 1 / n) ** n, n, oo)
print(S)

to get the result E, which attests to the validity of the limit. The script is at limit_e.py.

The expression

lim
𝑛→∞

[1 + 1
𝑛]

𝑛
(11)

does converge to a finite non-zero value, which is its limit. And the value of this limit is the

profoundly important mathematical constant 𝑒:

𝑒 ≜ lim
𝑛→∞

[1 + 1
𝑛]

𝑛
(12)
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What is the sum with instantaneous interest?

Instantaneous compounding does not lead to unlimited growth. We have guessed as much from

the results of evaluating Equation (9) for different values of 𝑛, as shown in Table 2.

Now that we have defined 𝑒, we may obtain a closed form solution for the amount from instant-

aneous compounding of interest [9]. In Equation (9), we retain 𝑃, 𝑟 and 𝑡 and let 𝑛 approach

infinity.

𝑆 = lim
𝑛→∞

𝑃 [1 + 𝑟
𝑛]

𝑛𝑡

= 𝑃 lim
𝑛→∞

[1 + 𝑟
𝑛]

𝑛𝑡

A purist would use 𝑥 rather than 𝑛 when moving from countable intervals to continuous com-

pounding. So, let us re-state the equation with 𝑥:

𝑆 = 𝑃 lim
𝑥→∞

[1 + 𝑟
𝑥]

𝑥𝑡

A magician’s distraction is called for here. We want the expression within the parentheses to have

a second term with one as the numerator so that it looks like the second term in Equation (12).

Let
𝑟
𝑥
= 1

ᵆ
. Then, the above equation becomes

𝑆 = 𝑃 lim
𝑥→∞

[(1 + 𝑟
𝑥)

𝑥
]
𝑡

= 𝑃 lim
𝑥→∞

[(1 + 1
𝑢)

ᵆ𝑟
]
𝑡

= 𝑃 lim
𝑥→∞

[(1 + 1
𝑢)

ᵆ
]
𝑟𝑡

= 𝑃 [ lim
𝑥→∞

(1 + 1
𝑢)

ᵆ
]
𝑟𝑡

= 𝑃𝑒𝑟𝑡

We can now confidently augment Table 2 by adding the last row with a value of∞ for 𝑛 and an

upper bound of 𝑆 = 𝑃𝑒𝑟𝑡 = 100𝑒0.05 = 105.1271096.

Thus far, we have distinguished between 𝑥𝑛 and 𝑛𝑥, emphasized that exponential growth is

truly phenomenal, considered compound interest at ever decreasing intervals between interest

payments, which finally let to the definition of 𝑒.

We have also glancingly looked at logarithms and contrasted linear and logarithmic scales. Central

to all this is the rather diminutive number 𝑒 lying between 2.5 and 3 that occupies a central place
in much of mathematics.

Hereafter, we will continue exploring 𝑒 and slowly invest it with mathematical trappings that go

beyond mere numberhood and allow fascinating insights to emerge between seemingly unrelated

fields.

Copyright © 2006–2025, R (Chandra) Chandrasekhar 13



The Exponential and Logarithmic Functions

Logarithms and the hyperbola

Limits are at the heart of both the differential and integral calculus. You have just seen one

application of limits in defining the important number 𝑒. We will now take a look at the use

of limits in integral calculus and the use of the logarithm as a function rather than as a mere

computational aid. Our journey takes us through the history of finding areas under curves before

the calculus had been fully fleshed out.

The procedure of finding the area under a closed planar curve is called quadrature or squaring.

This is because the area may be thought of as being composed of little squares, which when

assembled together and summed, equal the area under the curve.

Pierre de Fermat in France had achieved great success in computing the areas under curves of

the form 𝑦 = 𝑥𝑛.6 His method was to use a series of rectangles whose bases formed a geometric

progression with common ratio, 𝑟 less than one, and which therefore converged to a finite sum

which could be calculated. The one curve, though, that he could not handle was the rectangular

hyperbola, which is really a pair of curves defined by 𝑦 = 1
𝑥
. If Fermat applied his formula

∫𝑥𝑛𝑑𝑥 = 𝑥𝑛+1
𝑛 + 1 + 𝐶

he faced the problem of division by zero when 𝑛 = −1, and the method failed.

Computing the area

It was one of Fermat’s contemporaries, Grégoire Saint-Vincent, who was known as the “circle-

squarer”, who found a way to solve this problem. He also used intervals that were in a geometric

progression, but he made an important discovery in the case of a hyperbola like 𝑦 = 1
𝑥
.

Saint-Vincent started his integration at 𝑥 = 𝑟0 = 1 and divided the area under the curve into

intervals along the 𝑥-axis that were in a geometric progression as shown in Figure 5. He estimated

the areas of the differently coloured strips, and found that they were equal in area to each other.

This was Saint-Vincent’s profound and original contribution. How did he do this?

The account of Saint-Vincent’s method, as described below, has been drawn from several sources

[7,8,10]. It has been simplified to use modern methods and terminology, while remaining faithful

to the original in spirit and conception.

Consider Figure 6 which is Figure 5 redrawn to show how the unknown areas 𝐴1, 𝐴2, etc., may be

approximated by the known areas 𝑇1, 𝑇2, etc., of the respective trapeziums that are shown. Note

that the areas 𝐴1, 𝐴2 etc., are contiguous and non-overlapping.

1. Dashed lines like 𝑃𝑄 connecting the points 𝑃 and 𝑄 on the arc of the hyperbola, are drawn

corresponding to 𝑥 = 1 and 𝑥 = 𝑟 respectively, to get a trapezium whose area, 𝑇1 is known

exactly. The area of that trapezium is used to estimate the area 𝐴1, as explained below.

2. The point 𝑃(1, 1) lies on every rectangular hyperbola. Its 𝑥-coordinate represents the start
of both the geometric progression and the interval of integration. In our case, the common

6These are our monomial power functions.
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Figure 5: The area under a rectangular hyperbola. Grégoire Saint-Vincent estimated the area under the
hyperbola 𝑦 = 1

𝑥
by summing the differently coloured strips under the curve, of intervals which were

in a geometric progression. He found that the areas of all the strips were the same, i.e.,𝐴1 = 𝐴2 = 𝐴3,
etc. This led to the later discovery that the area under the hyperbola was related to the logarithm as a
function. See the text for a full explanation.
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Figure 6: Estimating the area under the hyperbola using adjacent trapeziums. The areas𝐴1 and𝐴2

are equal. See the text for the full explanaton.
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ratio 𝑟 > 1 because we do not seek convergence. The initial 𝑥-value is shown as 𝑟0 = 1 on
Figure 6.

3. 𝑄(𝑟, 1
𝑟
) also lies on the hyperbola. The straight line 𝑃𝑄 is an approximation to the arc 𝑃𝑄 on

the hyperbola. The trapezium with heights of 1 and 1
𝑟
and width (𝑟 − 1) represents a first

approximation to the unknown area 𝐴1 shown in Figure 5. The known area of the trapezium,

𝑇1, is
𝑇1 =

1
2 [

1
1 +

1
𝑟 ] [𝑟 − 1]

= 1
2𝑟 [𝑟

2 − 1]

≈ 𝐴1.

4. Moving to the next trapezium with base between 𝑥 = 𝑟 and 𝑥 = 𝑟2, we have

𝑇2 =
1
2 [

1
𝑟 +

1
𝑟2 ] [𝑟

2 − 𝑟]

= 𝑟
2𝑟2 [𝑟 + 1] [𝑟 − 1]

= 1
2𝑟 [𝑟

2 − 1]

≈ 𝐴2.

5. This pattern of all the trapezium areas being the same was the remarkable observation of

Saint-Vicent.

6. By repeatedly subdividing the intervals it may be shown that in the limit, the values of each

of the 𝑇𝑖 and 𝐴𝑖 will become equal. We will henceforth use 𝐴 to denote the single value

shown as 𝐴1, 𝐴2, 𝐴3, etc., in Figure 5. Note that the lower limit of area summation is 1 in all

cases. We may then tabulate the respective integrals, intervals of summation, and areas so

[10]:

Table 3: Area under a hyperbola versus interval of integration. NB: 𝑟0 = 1.

Integral Upper limit Area

∫
𝑟0

1

1
𝑥d𝑥 𝑟0 0

∫
𝑟1

1

1
𝑥d𝑥 𝑟 𝐴

∫
𝑟2

1

1
𝑥d𝑥 𝑟2 2𝐴

∫
𝑟3

1

1
𝑥d𝑥 𝑟3 3𝐴

∫
𝑟4

1

1
𝑥d𝑥 𝑟4 4𝐴

And this is where the matter rested, until Alphonse Antonio de Sarasa—a student and later a

Copyright © 2006–2025, R (Chandra) Chandrasekhar 17

https://en.wikipedia.org/wiki/Alphonse_Antonio_de_Sarasa


The Exponential and Logarithmic Functions

colleague of Grégoire Saint-Vincent—took a look at the results, and realized that it was a mapping

between a geometric and an arithmetic series, which meant that logarithms were involved.

A logarithm is a continuous real-valued function with the following two properties [12]:

(a) log(1) = 0; and

(b) log(𝑎𝑏) = log(𝑎) + log(𝑏).

Let us see if the function

∫
𝑡

1

1
𝑥d𝑥 = 𝜆(𝑡)

satisfies these two properties. By the first row of Table 3 property (a) is satisfied. Again, we have

from Table 3 that

∫
𝑟2

1
= ∫

𝑟

1
d𝑥 +∫

𝑟2

𝑟
d𝑥

= ∫
𝑟

1
d𝑥 +∫

𝑟

1
d𝑥

= 2∫
𝑟

1
d𝑥

In other words, 𝜆(𝑟2) = 2𝜆(𝑟). So, we may assert that the area under a hyperbola gives rise to a

logarithm function:

∫
𝑡

1

1
𝑥d𝑥 = 𝜆(𝑡) = log(𝑡). (13)

The only question now is, what is the base of the logarithm?

The function that equals its own derivative7

An exponential function 𝑓 to a base 𝑏 is defined as

𝑦 = 𝑓(𝑥) = 𝑏𝑥, 𝑥 ∈ ℝ

Let us investigate the derivative of 𝑦 = 𝑏𝑥 using the definition so:

d𝑦
d𝑥 = lim

ℎ→0

𝑏(𝑥+ℎ) − 𝑏𝑥
ℎ

= lim
ℎ→0

𝑏𝑥(𝑏ℎ − 1)
ℎ

= 𝑏𝑥 lim
ℎ→0

𝑏ℎ − 1
ℎ

The limit on the right hand side may or may not exist. Let us assume for now that it does. Then

7Beginning with the heading, this section, more than others, is heavily borrowed from Eli Maor’s excellent text e:
The Story of a Number [8].
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we may set it to a value 𝑘 and we then have the important relationship

d𝑦
d𝑥 = 𝑏𝑥 lim

ℎ→0

𝑏ℎ − 1
ℎ

= 𝑘𝑏𝑥
(14)

which means that the derivative of an exponential function at any point is proportional to the

value of the function itself, at that point.

The next question is this: is there any value of 𝑏 for which the constant of proportionality equals

one? That would give us a function whose value at any point equals its derivative at that point.

Let us investigate.

For finite ℎ we set the limit term on the RHS of equation Equation (14) to 1, i.e.,

𝑏ℎ − 1
ℎ = 1 (15)

If this expression were identically equal to 1, then we may assert that

lim
ℎ→0

𝑏ℎ − 1
ℎ = 1

Solving Equation (15) for 𝑏, we get

𝑏ℎ = 1 + ℎ

and taking “roots” on either side,

𝑏 = (1 + ℎ)
1
ℎ (16)

Since Equation (16) has been “derived” from Equation (14), taking the limit as ℎ tends to zero for

either should give equivalent results. That is the value of 𝑏 that makes an exponential function its

own derivative is also the value of 𝑏 that results from

𝑏 = lim
ℎ→0

(1 + ℎ)
1
ℎ (17)

If in Equation (17) we replace
1
ℎ
by 𝑚, and note that ℎ → 0 is equivalent to 𝑚 → ∞, we may

re-write Equation (17) as

𝑏 = lim
𝑚→∞

(1 + 1
𝑚)

𝑚
(18)

But we know from Equation (12) that the limit in Equation (18) is by definition equal to 𝑒.

It has been a bit of a hard slog, but we can now confidently say that the unique function that is its

own derivative and anti-derivative is the exponential function with base 𝑒. Indeed, this function
is sufficiently important for it to be called the natural exponential function or the exponential

function, as we have already seen.

So, when we talk of the exponential function, we mean

exp(𝑥) = 𝑒𝑥, 𝑥 ∈ ℝ

Copyright © 2006–2025, R (Chandra) Chandrasekhar 19



The Exponential and Logarithmic Functions

Let us see where the foregoing leads to. Let 𝑦 = 𝑒𝑥. Then

d𝑦
𝑑𝑥 = d

d𝑥 (𝑒
𝑥)

= 𝑒𝑥

= 𝑦

(19)

If one takes reciprocals on either side of Equation (19), one gets

d𝑥
d𝑦 = 1

𝑒𝑥

= 1
𝑦, i.e.,

d𝑥 =
d𝑦
𝑦, leading to

𝑥 = ∫ 1
𝑦d𝑦

(20)

This appears similar to the equation for the area under the rectangular hyperbola given in

Equation (13). But what is 𝑥 in terms of 𝑦?

The natural exponential and logarithmic functions

The natural logarithm function is that logarithm function that has 𝑒 as its base. In a generic

fashion, one may write it as log𝑒 but the accepted convention is to refer to it as ln.8 Now ln is the

inverse of the exponential function, exp, which means,

ln (exp (𝑥)) = ln 𝑒𝑥 = 𝑥, 𝑥 ∈ ℝ and conversely

exp(ln(𝑥)) = 𝑒ln(𝑥) = 𝑥, 𝑥 ∈ (0,∞).

Note carefully that because exp (𝑥) is strictly greater than zero for real 𝑥, the domain of the

natural logarithm function (and indeed of all logarithm functions) is (0,∞). Inverse functions are
reflections of each other on the line 𝑦 = 𝑥 on the Cartesian plane. This is illustrated for exp (𝑥)
and ln (𝑥) in Figure 7.

We are now in a position to answer the question asked at the end of the section Computing the

area about the base of the logarithm which gave the area under a hyperbola. The base of the

logarithm is 𝑒 and we may write:

∫
𝑡

1

1
𝑥d𝑥 = ln 𝑡 (21)

One may then use Equation (12) to define the exp function and Equation (21) to define the ln

function, with the knowledge that they are an inverse function pair.

One might wonder if there is a geometrical significance to the number 𝑒 like there is for 𝜋 as the

ratio of the circumference to the diameter of a circle. Think about this for a while before reading

on. As before, the conics hold the answer.

8Mathematical conventions and practice might change. Programming languages might use log instead of ln.
Beware! You have been forewarned.
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Figure 7: The exponential and natural logarithm functions shown as reflections of each other on the
line 𝑦 = 𝑥. This is a property of inverse function pairs, 𝑓 and 𝑓−1 because 𝑓(𝑓−1(𝑥) = 𝑓−1(𝑓(𝑥)) = 𝑥.
Notice that exp(0) = 1 and that ln(1) = 0. This is true for all exponential and logarithmic functions
regardless of the chosen base. The relative shapes of the exponential and logarithmic functions
remain similar for bases other than 𝑒.

Copyright © 2006–2025, R (Chandra) Chandrasekhar 21



The Exponential and Logarithmic Functions

Substituting 𝑡 = 𝑒 in Equation (21), we get

∫
𝑒

1

1
𝑥d𝑥 = ln(𝑒) = 1. (22)

This equation comes closest to stitching 𝑒 to geometry, but it uses the thread of calculus! Mark

how the number 1 also plays a prominent role here.

Logarithms and dynamic range compression

Our human senses of sight and hearing each have enormous dynamic ranges. The eye can respond

to light intensities across 13 orders of magnitude.9 Likewise our ears can hear sound intensities

ranging from whispers to explosions, across 12 orders of magnitude.

If you think of a weighing scale, it usually has a scale that ranges, from say 0 kg to perhaps 150 kg.

Most instruments only have a limited range over which they can measure. To increase the range,

you may have to switch the input to another scale before making the measurement. How then

do our ears and eyes accommodate such large dynamic ranges without the need for any form of

switching?

The answer lies with logarithms. Logarithms naturally compress a large linear range to a more

compact one. This would be clear from the graph of the logarithm function plotted in Figure 7.

There is a “law” first propounded by the German physiologist Ernst Heinrich Weber that the “just

noticeable difference” (JND) that human beings experienced to any physiological stimulus was

related by the differential equation

d𝑠 = 𝑘d𝑊𝑊
where d𝑠 is the JND,𝑊 the stimulus already present, and d𝑊 the stimulus increase. The German

physicist Gustav Theodor Fechner popularized Weber’s hypothesis, which leads to the solution

𝑠 = 𝑘 ln𝑊 + 𝐶

This is referred to as the Weber-Fechner law, but is really only a hypothesis that has not achieved

the status of a theory, much less a law, especially because it has to do with subjective sensation

and perception.

The important lesson for us is that logarithmic compression allows very large dynamic ranges

to be accommodated, without input sensor switching. Logarithmic scales abound in the natural

sciences and engineering: the pH scale for acidity, the Richter scale for measuring earthquake

intensities, and the decibel scale for sound intensity, or for signal voltage, and power in electrical

engineering, to name just a few.

Why is 𝑒 important?

We have now reached the stage where we can answer the question, “Why is 𝑒 important?”

9An order of magnitude conventionally means a power of ten. Two orders of magnitude thus refers to a ratio
between two quantities that is either one hundred or one hundredth.
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The number 𝑒’s claim to fame is because of the remarkable properties of the exponential function

exp(𝑥), which has the unique distinction of being its own derivative and anti-derivative. Stated

formally,
d

d𝑥 exp(𝑥) = exp(𝑥) (23)

and,

∫ exp(𝑥)d𝑥 = exp(𝑥) + 𝐶 (24)

where 𝐶 is an arbitrary constant of integration. Nature is full of systems that can be modelled

using this property of exponentials. In addition, the exponential and logarithmic functions are a

formidable inverse mathematical pair, as we have seen in this blog.

In a succeeding blog, we will see that 𝑒 is the natural bridge between the real and complex

domains—a connection that has given rise to some very powerful mathematics.
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