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In a recent blog I chronicled my efforts at solving the Project Euler Problem 1 using the program-

ming language Rust. At the conclusion of the blog, I was less enthusiastic about Rust than I was

at the start.

Was there another relatively new programming language that was better suited to my tempera-

ment and that held promise to become mainstream? I thought of Julia, which is reputed to be

both high-level and fast.

I also happened to watch recently a talk by an academic from India, Professor Sourish Das,

belonging to the specialist Chennai Mathematical Institute, in which he pitched for Julia as the

programming language of the future, for the field of Data Science. The good professor compared

Julia with current mainstream languages used in Data Science, and explained with convincing

facts why he was batting for Julia.

Prequel: Solving Project Euler Problem One

To compare apples with apples, I thought I would first try to solve Euler Problem 1 using Julia.

The first thing I looked for was vectorization and the use of the simple start:step:end syntax

that was familiar to me from Octave. I searched for vectors and ranges and landed up here.

From there, it was almost trivial to solve Euler One with this one-liner in Julia:

sum(3:3:999) + sum(5:5:999) - sum(15:15:999)

Note that we have the same end value for the three vectors because of the words below 1000 in

the problem. We did not need to separately compute the number of terms in each case. And the

fact that ranges in vectors are inclusive at both ends, all made for a simple and succinct solution.

The answer, of course, is 233168 as before. With Euler One out of the way, we are now free to

analyze and solve Euler Two using Julia.

Statement of problem: Euler Two

The Euler Project Problem 2 is stated as follows:
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Each new term in the Fibonacci sequence is generated by adding the previous two terms. By

starting with 1 and 2, the first 10 terms will be:

1, 2, 3, 5, 8, 13, 21, 34, 55, 89,…
By considering the terms in the Fibonacci sequence whose values do not exceed four million,

find the sum of the even-valued terms.

Dissecting the problem

The problem states “By starting with 1 and 2,” indicating that the starting point is not universally

accepted as 1 and 2.

Indeed, the Fibonacci sequence at OEIS starts off like this:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377,… (1)

I prefer the sequence of Equation (1) for aesthetic reasons and will use it in this problem, despite

instructions to the contrary.

The second important phrase asks for the sum of the “even-valued terms”. It is important to

understand the meaning of “even” here. The even-numbered terms are those occupying even

positions in the sequence. The even-valued terms, on the other hand, are those whose values are

even. The two need not be the same, and are not the same in this case.

The third important phrase is “whose values do not exceed four million”. A number less than or

equal to 𝑥 does not exceed 𝑥. Thus, the mathematical condition is “≤ 4, 000, 000”. Moreover, the

stopping condition refers to the whole Fibonacci sequence. Let this upper bound be called:

𝐹𝑚 = 𝐹max ≤ 4, 000, 000. (2)

We do not know the value of either𝑚 or 𝐹max at present.

Recurrence relation for the Fibonacci sequence

The recurrence relation for the Fibonacci sequence is:

𝐹1 = 0
𝐹2 = 1
𝐹3 = 𝐹2 + 𝐹1 = 1
𝐹4 = 𝐹3 + 𝐹2 = 1 + 1 = 2
𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 for 𝑛 ∈ ℕ and 𝑛 > 2

(3)

While there is an explicit formula for the 𝑛th Fibonacci number, called Binet’s formula, its use

involves the irrational, algebraic number√5, and programs using it will suffer from rounding

errors. However, this does not preclude methods based on Binet’s formula, provided they are

used knowledgeably [1].
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The even-valued Fibonacci subsequence

If we look at Equation (1), we will notice that, assuming zero is even, the even terms are:

0, 2, 8, 34, 144,…

and their position in the sequence is

1, 4, 7, 10, 13,…

spaced at every three terms apart. Note that the indices of the even-valued Fibonacci subsequence

actually form an arithmetic sequence with 𝑎 = 1 and 𝑑 = 3 and 𝑛th term 1 + (𝑛 − 1)3 = 3𝑛 − 2. If
we use this sequence to filter the Fibonacci sequence, and sum it, we will be done. This is one

approach. We will explore other approaches later.

So, the sum we are after, assuming that Equation (3) holds, is

𝑚
∑
𝑘=1

𝐹3𝑘−2. (4)

where𝑚 is the index of the largest even-valued Fibonacci number that does not exceed 4,000,000,

which is 𝐹max. We will consider this subsequence in its own right toward the end of this blog.

Small steps toward the solution

Because the syntax of Julia is new to me, I will start with trivial scripts that almost single-step

toward the solution.

Append the third Fibonacci number to the array

Let us concatenate the third Fibonacci number to the first two. Obviously, we need a one-

dimensional array, or vector, F to hold the Fibonacci numbers.

The first two elements of F are pre-defined. So, only the third element must be defined by the

recurrence relation Equation (3), and added to the end of the array, or appended to it. The code to

do this is:

# Append the third Fibonacci number to the Fibonacci array
F = [0, 1];
push!(F, F[1] + F[2]);
println(F);

It works and gives us [0, 1, 1]. So far so good.

First twenty elements of the Fibonacci Sequence

Because we know that there are twenty elements beforehand, our task is easier and may be

accomplished by a for loop.
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# Generate the first twenty Fibonacci numbers
F = [0, 1];
for i in (3:20)

push!(F, F[i-1] + F[i-2]); # append to array
end
println(F);

This gives the first twenty Fibonacci numbers as [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,
89, 144, 233, 377, 610, 987, 1597, 2584, 4181]. Array indices in Julia begin with 1,
and the [ and the ] represent the array delimiters. You can download the script here.

So, we are good. Notice that we did not even need to define F[i] = F[i-1] + F[i-2] but could
simply invoke the right hand side (RHS) of the recurrence relation and append it to the array.

Thus far, the syntax in Julia has tracked the mathematical expression very closely.

How to stop when we need to?

The difficulty is that, while we know from Equation (2) the upper bound that should not be

exceeded, we know neither the value of the largest Fibonacci number, 𝐹max, at which we must

stop, nor its index𝑚.

We therefore need to allocate an array whose dimension is not known in advance. We have

worked around this constraint by using push! so far. But the for iterator needs an end value

which we do not know in advance. So, we need another loop construct.

Julia also offers a while loop. As with while loops in all languages, it must be used with care,

because of the following possible undesirable outcomes, if used carelessly:

a. It does not execute even once.

b. It stops at one more than the expected condition.

c. It stops at one less than the expected condition.

d. It loops indefinitely.

From what I know so far, the program should preferably use a while loop that goes on forever

and is forcibly terminated when a known stopping condition is encountered within its body.

Following this approach, here is my program to output all the Fibonacci termswhich do not exceed

4, 000, 000.

# Generate the Fibonacci numbers which do not exceed 4 million
const MAX = 4000000;
F = [0, 1, undef]
i = 3 # Array already has three elements
#
while true

global i
F[i] = F[i-1] + F[i-2]
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# println(”$(i)” , ” ”, ”$(F[i])”) # for troubleshooting
(F[i] + F[i-1]) <= MAX || break
push!(F, F[i]) # append to array
i += 1

end
#
println(i)
println(F)

Commentary on the program

This program was written with very little knowledge of Julia. It uses the wrong approach, but

gives the right answer. It should not be used as an example to write code in Julia.

Nevertheless, I will go through the above program one line at a time. We first define the constant

4, 000, 000 using an uppercase name, as is prevalent in C as well. Note that we may terminate a

line with a semi-colon, or leave it out, as we please.

The array F is of type Any because we have not assigned a type to it. While type assignment might

matter in other situations, not assigning it now is simpler for our purposes.

We are within our rights in allocating values to the first two elements of F because the sequence

cannot fire up otherwise.

Note that the third element of F is undef, i.e, it is left undefined. We need to reserve a place for

the third element because we will be evaluating it at the top of the while loop, and we could run

into an out of bounds error otherwise.

Array indices start at 1 in Julia and we need i to be 3 at the start of the while loop. The value

of i cannot, however, be passed to the while loop unless we declare it global. I later found out

from the user-community that declaring variables global is a strict no-no.

We then progress to the code that actually embodies the recurrence relation in Equation (3): F[i]
= F[i-1] + F[i-2]. The line after this was used for troubleshooting and may be uncommented

for that purpose if desired.

The statement (F[i] + F[i-1]) <= MAX || break is the condition that terminates the while.
To see why it is positioned as it is in the code, imagine that we have the second largest Fibonacci

number to be 2.5million and the next number to be 3.5million. The succeeding Fibonacci number

will therefore be 6million. The loop will surely stop when it encounters 6million. But will it stop

at 3.5million which is still within the stipulated bound?

Therefore, we need to evaluate the next Fibonacci number and test it against the stopping condition.

If it is within bounds, we append it to the array with push!(F, F[i]) and then increment the

array index i. Otherwise, we will abruptly break and exit the program.

At the end, we print out the last i value, which is 34 and the complete Fibonacci sequence whose

values do not exceed 4, 000, 000. The largest permissible Fibonacci number, obeying this condition,

is 3524578. The full sequence is:
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[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597,
2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811,
514229, 832040, 1346269, 2178309, 3524578]. It appears prefixed by the word Any
which is an artifact of the language and should be ignored.

We may now append a second script to sum the even numbers in this sequence.

Sum of even-valued Fibonacci numbers not exceeding 4million

We are a stone’s throw away from solving the set problem. All we need do is to sum the even

numbers in the array F. The indices of these are 1, 4, 7, etc. So we slice F as shown below to get

the even sequence E. The sum of E is our desired result.

#
# Sum of even Fibonacci numbers in F
#
E = F[1:3:end]
println(E)
println(sum(E)) # This is what we want

The answer to the problem is 4613732. I am deliberately not including a download link for this

script as it does not embody best practice in Julia.

Things I got wrong with the above script

Since I am just learning Julia, and had some doubts, I posted a question at the community forum

where experienced Julia programmers respond to queries. Their replies were very definite on

what to do and what not to do, and also revealed a diversity of approaches to solve the problem.

The experts were in one voice saying that global variables should not be used. They advised me

to define a function and use it instead. Indeed, they even gave me examples of code to solve Euler

Two.

I have slightly modified one of the solutions I received, and list it below. It uses functions to

circumvent the need for global variables. Please treat my previous solution as a mistake, and

consider the code fragment below as one of many proper solutions.

function fibo(maxval)
val = 1
F = [0, val] # assign values to the first two Fibonacci terms
while val <= maxval

push!(F, val) # the third term is also 1
val = F[end] + F[end-1] # the recurrence relation; same as v += F[end-1]

end
return F # return the whole array

end

#
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# Obtain the Fibonacci sequence for all values not exceeding 4 million
#
A = fibo(4000000)
println(A, ” ”, length(A)) # The length gives the index of the largest admissible Fibonacci number

#
# Extract and sum the even-valued terms
#
E = A[1:3:end]
println(sum(E))

The sum of the even-valued terms in the Fibonacci sequence not exceeding fourmillion is 4613732.
This file may be accessed here.

A second look at the problem

In our first pass, we stuck very closely to the Fibonacci sequence, evaluated it in full until the

prescribed limit, and then obtained the even-valued sum. From a programming point of view,

this may be deemed “naive” and “wasteful” in a way because:

1. We evaluate the entire sequence and throw away more than half the terms. It would be more

efficient to obtain a recurrence relation for the even-valued subsequence and use that instead.

2. After assembling the array, we sum it to get a single number. We are aggregating a vector

into a scalar. Would it not be better to sum as we go along and keep accumulating the result

in a single scalar, rather than maintaining a vector that we sum at the end?

These observations are generic keys to efficient programming, and could result in more frugal

programs in terms of memory and execution times. This “philosophy” will help us write better

programs. The rest of this blog explores this approach.

The even-valued Fibonacci subsequence

Let us call the even-valued subsequence of the Fibonacci sequence the even sequence for short,

remembering that it is not the even terms but the even values that we are after.

Two important factors will guide our efforts at getting a recurrence relation for the even sequence:

1. The original recurrence relation applies to the Fibonacci sequence.

2. The even sequence is predictably distributed in the Fibonacci sequence, with even values

every three places.

This means that we should be able to get a recurrence relation by writing the relationships in

terms of the even sequence alone, starting from the full Fibonacci sequence. The even-valued

terms are three positions apart. So, we span seven terms from index 𝑘 to index (𝑘 + 6) to get the
recurrence relation, which has been colour-coded to reveal how terms have been expanded and
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grouped:

𝐹𝑘+6 = 𝐹𝑘+5 + 𝐹𝑘+4 (expand RHS solely in terms of 𝐹𝑘+3 and 𝐹𝑘)
= 𝐹𝑘+4 + 𝐹𝑘+3 + 𝐹𝑘+3 + 𝐹𝑘+2
= 𝐹𝑘+3 + 𝐹𝑘+2 + 𝐹𝑘+3 + 𝐹𝑘+3 + 𝐹𝑘+2 (expand 𝐹𝑘+2 = 𝐹𝑘+1 + 𝐹𝑘)
= 3𝐹𝑘+3 + 𝐹𝑘+2 + 𝐹𝑘+1 + 𝐹𝑘
= 3𝐹𝑘+3 + 𝐹𝑘+2 + 𝐹𝑘+1 + 𝐹𝑘 (since 𝐹𝑘+3 = 𝐹𝑘+2 + 𝐹𝑘+1)
= 3𝐹𝑘+3 + 𝐹𝑘+3 + 𝐹𝑘
= 4𝐹𝑘+3 + 𝐹𝑘

(5)

If we write Equation (5) in terms of the even sequence, 𝐸𝑛, noting that indices 𝑘, (𝑘 + 3), and
(𝑘 + 6) represent its successive terms, which we shall call 𝑛, (𝑛 + 1), and (𝑛 + 2), we get:

𝐸𝑛+2 = 4𝐸𝑛+1 + 𝐸𝑛 (6)

We need to initialize 𝐸1 = 0 and 𝐸2 = 2. Thence, we may generate the whole even sequence. Let

us write this using Julia syntax.

Summing the even-valued sequence in Julia

Three variables are used in the recurrence relation. A fourth is needed for the sum. So, with four

variables and some judicious code, we should be able to solve the problem directly, efficiently,

and fast.

function fibonacci_even_sum(maxval)
current, previous = 2, 0
sum = current + previous
next = 4current + previous # recurrence relation for even-valued Fibonacci numbers
while (next <= maxval)

sum += next
current, previous = next, current
next = 4current + previous # recurrence relation for even-valued Fibonacci numbers

end
return sum

end

Observe the following:

1. The assignment current, previous = 2, 0 is idiom for (current, previous) = (2,
0) and is the syntax for tuple assignment in Julia. One could either use the parentheses

or leave them out altogether.

2. The expression 4current is a shorthand for 4 * current and is yet another aspect of the

language that makes its syntax mathematics-friendly and nimble.

3. The while condition need not have parentheses, although I have shown it here with them.
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4. Lines need not end with a ; and the return value need not be wrapped in parentheses. Code

written without syntactic clutter like this is easier on the eye and also simpler to decode to

reveal the underlying algorithm.

The function must be called separately from its definition and the value of the sum should be

printed out. Therefore, if we append the following two lines to the above function, we would get

our final result:

evensum = fibonacci_even_sum(4e6) # 4 million
println(evensum)

which gives 4613732 as before, and all is well. This script is available here.

Final assessment

The Julia programming language is refreshingly adaptive in its syntax and allows the program-

mer to solve a problem in very many ways.

In the case of Euler Project Problem 2, I found out that I got into trouble, mostly because I was

running foul of doing things the “right way”. The language gently nudges one to think again before

coding. It coaxes rather than coerces the programmer to adopt efficient and safe coding practices.

The existence of a knowledgeable user-community who were ready to help, and who could

illuminate the problem from different angles, made learning Julia enjoyable, educational, and

enriching. It is a language that I will spend time learning properly, and use in the future.

Caveat Lector! or Reader Beware! or Disclaimer

I am new to Julia, and what I have written here represents my efforts at learning—errors and

all. Experienced “Julians”1 who find errors are requested to email me with their corrections. ☹ 

Acknowledgements

The Julia-user community is knowledgeable, courteous, and helpful, and they are very enthu-

siastic about their programming language. The website to ask for help is Julia Programming

Language - A forum for users and developers.

When I encountered difficulties with my code, I sought the community’s help in this thread [1].

The wealth of information given there is enough to keep one busy for quite a while, learning

different ways to solve the same problem and also different ways to think about problems in

general.

Feedback

Please email me your comments and corrections.

A PDF version of this article is available for download here:

1Rust pogrammers call themselves “Rustaceans”. Python programmers call themselves “Pythonistas”. I propose
that Julia programmers call themselves “Julians”.
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https://swanlotus.netlify.app/blogs/euler-two-with-julia.pdf
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