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Stimulating interest in an arcane topic

A university academic friend of mine recently remarked that it was not easy to motivate students

to study eigenvalues and eigenvectors, let alone appreciate their importance: the subject itself

was abstract, and the applications tended to be domain-specific and somewhat arcane.

A cursory Web search turned up results that confirmed his assertions and concerns. There have

been pro and con views about motivating students to learn about eigenvalues and eigenvectors,

and especially to convey intuitively their importance.

I then asked, “Can I explain tomyself what eigenvalues and eigenvectors are, and why they are

important?”. It also occurred to me that the harried and hurried students of today might derive

some benefit from my efforts; hence this blog. It is a brief, largely qualitative, and mathematically

non-rigorous article on eigenvalues and eigenvectors that aims to providemeaning andmotivation

for their study. Corrections and suggestions for improvement are most welcome. 🙂

Eigenvalues and eigenvectors

As a general rule, the more powerful an idea, the more prevalent it becomes. Think about words

and numbers, and you will see what I mean.

Eigenvalues and eigenvectors are one such powerful idea. It is no surprise that they appear in

different guises in different contexts: in oscillating electronic circuits, in dynamical systems, in

computer games, in the spectra of atoms, and in Google searches, to name just a few.

The word eigen is German in origin and means “inherent, characteristic, natural, own, or peculiar

(to)”. So the prefix “eigen” captures the natural essence of the noun it qualifies. Perhaps the word

“idiosyncratic” comes closest to conveying its import.

https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
http://matheducators.stackexchange.com/questions/520/what-is-a-good-motivation-showcase-for-a-student-for-the-study-of-eigenvalues
http://matheducators.stackexchange.com/questions/8586/too-much-motivation
http://matheducators.stackexchange.com/questions/3983/what-is-the-best-way-to-intuitively-explain-what-eigenvectors-and-eigenvalues-ar
http://math.stackexchange.com/questions/23312/what-is-the-importance-of-eigenvalues-eigenvectors
https://en.wikipedia.org/wiki/Talk:Eigenvector
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Matrices

Eigenvalues and eigenvectors are associated traditionally with matrices. If numbers are like

tea-leaves, matrices are like tea-bags. They are rectangular arrays of numbers, whether real

or complex, that have been hijacked by mathematicians to serve as a shorthand in a variety

of contexts. What they mean depends on context and level of abstraction. They can represent

geometric transformations in Euclidean space, or systems of linear equations, or systems of linear

differential equations with constant coefficients, or linear transformations in vector spaces. Note

the recurrence of the word linear here.

Invariance and identity elements

Invariance is a central concept in mathematics and physics. Adding zero to a number leaves

it unchanged. Multiplying a number by one again leaves it unchanged. And zero and one are

important numbers, usually called the additive andmultiplicative identity elements respectively.

Consider now the matrix equivalent of multiplying by 1, an example of which is:

[
1 0
0 1

] [
𝑣1
𝑣2
] = 1 [

𝑣1
𝑣2
] = [

𝑣1
𝑣2
] (1)

The 2×2matrix on the extreme left of Equation (1) is the identity matrix of dimension 2, analogous
to the multiplicative identity. We could write this equation more succinctly as:

𝐼𝐯 = 1𝐯 (2)

𝐼, on the left, is the identity matrix, the number 1 on the right is called an eigenvalue and the vector

𝐯 is called an eigenvector. Note that there are no strictures on 𝐯. So, in this particular case, all

vectors 𝐯 are eigenvectors but there is only one eigenvalue, namely 1. This example, however, is

both unusual and contrived, because the identity matrix is a special type of square matrix with

ones on its principal diagonal and zeros elsewhere.

Equation (2) is a particular case of the general equation for eigenvalues and eigenvectors, which

is written:

𝑀𝐯 = 𝜆𝐯 (3)

where𝑀 is a general square matrix, 𝜆 is a real or complex scalar called an eigenvalue, and 𝐯 is a

non-zero vector called an eigenvector. The matrix𝑀 is assigned meaning according to context.

Geometrically, the orientation of the vector 𝐯 is unchanged by the transformation𝑀, although if 𝜆
is negative, the direction is reversed. Specifically, the eigenvector corresponding to an eigenvalue

of 1 remains unchanged by the transformation—an example of invariance.

Calculus

The operation of taking a derivative may be denoted by the differential operator, 𝐷. We know that

𝑑
𝑑𝑡𝑒

𝑡 = 𝐷(𝑒𝑡) = 𝑒𝑡

Copyright © 2006–2023, R (Chandra) Chandrasekhar 2

https://en.wikipedia.org/wiki/Matrix_%28mathematics%29
http://mathworld.wolfram.com/Invariant.html


Eigenvalues and Eigenvectors—Why are they important?

and further that
𝑑
𝑑𝑡𝑒

𝑠𝑡 = 𝐷(𝑒𝑠𝑡) = 𝑠𝑒𝑠𝑡

where 𝑠 is a scalar and 𝑡 is the independent variable, usually time. Although 𝐷 is not a matrix

here, it is nevertheless a linear transformation that operates on functions. And in place of a vector,

we have a function, 𝑒𝑠𝑡, which is therefore called an eigenfunction of the differential operator, with

eigenvalue 𝑠. The importance of the complex exponentials in signal and system analysis cannot

be over-emphasized: just recall the Laplace and Fourier transforms.

Differential Equations

Linear homogeneous differential equations with constant coefficients may be written using the 𝐷
notation already introduced. A second order homogeneous equation with independent variable 𝑡
and dependent variable 𝑦may be written as 𝑎2𝐷2(𝑦) + 𝑎1𝐷(𝑦) + 𝑎0(𝑦) = 0. Plugging in a solution

of the form 𝑦 = 𝑒𝑠𝑡, we get (𝑎2𝑠2 + 𝑎1𝑠 + 𝑎0)𝑒𝑠𝑡 = 0. Since 𝑒𝑠𝑡 can never be zero, we may divide by

it to get the characteristic polynomial

𝑎2𝑠2 + 𝑎1𝑠 + 𝑎0 = 0. (4)

The roots of this characteristic polynomial give us the eigenvalues of the system. Perhaps, the

prefix “eigen” came to be used because of the adjective “characteristic”.

These ideas masquerade under different terminology in linear system and control theory where

transfer function, poles and zeros, natural frequency and resonance, and stability are encountered.

Characteristic polynomial of a square matrix

The characteristic polynomial of a square matrix is obtained likewise. The equation𝑀𝐯 = 𝜆𝐯may

be re-written as (𝑀 − 𝜆𝐼)𝐯 = 𝟎, where the right hand side is the zero vector. Since the eigenvector

𝐯 is non-zero, this implies that the matrix (𝑀 − 𝜆𝐼) is singular or non-invertible, which in turn

implies that its determinant is zero. So, the characteristic polynomial is the equation

det(𝑀 − 𝜆𝐼) = 0 (5)

and its roots are the eigenvalues of𝑀. The determinant of a square matrix is a number associated

with it, obtained by adding and subtracting products of its elements in a specific order.

Linear transformations and vector spaces

A vector space is a powerful mathematical abstraction that allows us to unify many disparate

branches of mathematics under a uniform taxonomy. Linear transformations are a particular

type of mapping between two vector spaces over a scalar field, satisfying:

𝑇(𝐮 + 𝐯) = 𝑇(𝐮) + 𝑇(𝐯)
𝑇(𝛼𝐮) = 𝛼𝑇(𝐮)

(6)

where 𝑇 is the transformation, 𝐮 and 𝐯 are two vectors, and 𝛼 is a scalar.
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𝑇may be represented by a matrix, and under certain conditions, its eigenvalues and eigenvectors

can characterize the transformation completely. This happens when (a) all the eigenvectors are

linearly independent, i.e., no two eigenvectors are parallel, and (b) when they span the vector space,

i.e., any vector within the space can be constructed from a linear combination of the eigenvectors.

The eigenvectors are then said to form a basis for the space.

As a case in point, let us say 𝑇 is a 3 × 3 matrix whose eigenvectors 𝐞𝟏, 𝐞𝟐, and 𝐞𝟑 are linearly
independent and form a basis. Then, if 𝐯 = 𝛼1𝐞𝟏 + 𝛼2𝐞𝟐 + 𝛼3𝐞𝟑, where the 𝛼𝑖s are scalars, by
virtue of the fact that 𝑇 is a linear transformation, we have

𝑇(𝐯) = 𝑇(𝛼1𝐞𝟏 + 𝛼2𝐞𝟐 + 𝛼3𝐞𝟑)
= 𝑇(𝛼1𝐞𝟏) + 𝑇(𝛼2𝐞𝟐) + 𝑇(𝛼3𝐞𝟑)
= 𝛼1𝑇(𝐞𝟏) + 𝛼2𝑇(𝐞𝟐) + 𝛼3𝑇(𝐞𝟑)
= 𝛼1𝜆1𝐞𝟏 + 𝛼2𝜆2𝐞𝟐 + 𝛼3𝜆3𝐞𝟑

Notice how the right hand side is now expressed purely as a sum of scaled eigenvectors. This is

the essence of why eigenvalues and eigenvectors are so important: they are sufficient to describe

what is taking place. Eigenvalues and eigenvectors encode the transformation succinctly, just as

DNA encodes biological information.

If, in addition, 𝑇 is symmetric, its eigenvectors form an orthonormal basis. Such basis vectors

confer parsimony (think low bandwidth) when images or audio signals need to be deconstructed

for transmission and reconstructed on reception. Eigenvectors are also useful in techniques like

principal component analysis which is used in statistical pattern recognition.

The applications of eigenvalues and eigenvectors in linear algebra run far and deep. Suffice it

here to merely mention that an extension, fortuitously called spectral theory, even explains the

observed spectra of atoms in quantum theory!

A property of eigenvectors

I will here belabour a point that might seem blindingly obvious to some but frustratingly obscure

to others. Let 𝐯 be an eigenvector associated with a distinct eigenvalue 𝜆 as in Equation (3), and

let 𝑘 be a non-zero scalar. Then, using the second of the equation-pair Equation (6), we have

𝑀(𝑘𝐯) = 𝑘(𝑀𝐯) = 𝑘(𝜆𝐯) = 𝜆(𝑘𝐯), (7)

which means that if 𝐯 is an eigenvector, any non-zero scalar multiple of 𝐯 is also an eigenvector for

that same eigenvalue. So, strictly speaking, we really should be referring to an eigenvector—rather

than the eigenevctor—corresponding to any given eigenvalue.

Worked example

Aworked example would normally have made its way here at this point in the article. But because

the example is long and might not interest everyone, I have relegated it to the end of the article.

Stay tuned if you are enthused.
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Resources

I hope that this article has not been so brief as to be cryptic and off-putting. To those in search of

greater rigour or a more formal exposition, I would recommend a good linear algebra textbook.

The venerable tome that I used at university went by the acronym “KKOP” after the initials of the

surnames of the four authors, Kreider, Kuller, Ostberg, and Perkins [1]. Unfortunately, it is out of

print, but as a consolation, Figure 1 is an image of my copy. 😞

Figure 1: The KKOP book: An Introduction to Linear Analysis.

For something more contemporary, I would recommend the textbooks and lectures of Professor

Gilbert Strang of MIT. They are attuned to those who apply mathematics, like engineers and

scientists. There is an archived video of his lecture on eigenvalues and eigenvectors. There are

also links to his MIT Open Course Ware (OCW) page for Course 18.06 of Spring 2010, his linear

algebra textbook home page [2], and his academic home page.

Many academics make their lecture notes freely available online: google for them. You Tube

videos of lectures are another source of information and knowledge, which offer the immediacy

of a classroom lecture with the convenience of instant rewind in case you need to catch something

you missed.

Online forums offer a slightly more interactive learning experience but again, their depth and

quality varies. The Mathematics StackExchange and Quora are two sites that you might explore.

Examples of all the above types of resources have been tucked away within the various links in

this article: try them out to get a flavour of what is available.
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Importance and applications

If, after all this, you are still unconvinced about the utility of eigenvalues and eigenvectors,

think of this analogy. Crystals have natural cleavage planes that allow them to be fractured

easily along specific directions. This exploits the symmetry in the crystals. Likewise, eigenvalues

and eigenvectors exploit the naturally occurring symmetries of mathematical structures and

transformations to allow us to view them more simply and insightfully. Without eigenvalues and

eigenvectors, we would have neither radios nor lasers.

To get an idea of the broad sweep of eigenvalues and their applicability, I strongly recommend

that you should read a charming article entitled “Favourite Eigenvalue Problems”. Another article

that takes a breezy look at the subject of this writeup is “What the Heck are Eigenvalues and

Eigenvectors?”. It has a disputed explanation (see comments on the article) of how a bridge

collapsed—so take that cum grano salis. It also contains a link to a PDF paper interestingly entitled

“The 25,000,000,000.00 Dollar Eigenvector: The Linear Algebra Behind Google”, which, in good

faith, I think is not a spoof! Indeed, the citation to the original Stanford InfoLab technical report

and the actual report are both available online.

Worked example: modelling weather with a transition matrix

Now for the promised example of eigenvalues atwork—in a simplified real-life situation,modelling

the weather. Let us assume that yesterday’s weather influences the probability of today’s weather,

and today’s weather influences the probability of tomorrow’s weather. Each day’s weather depends

only on the previous day’s weather, i.e., the weather has a “memory” of one day.

To keep it simple, let us have only three weather states: sunny, cloudy, and rainy, with the

stipulation that each day can only be one of these three. Further, in our matrix, let the ordering

be sunny, cloudy, and rainy, both left to right, and top to bottom. Then, the column headings

represent today’s weather and the row headings represent tomorrow’s weather. We then have the

state-transition matrix orMarkov matrix𝑀 given in Equation (8):

𝑀 = [
0.65 0.30 0.10
0.25 0.45 0.40
0.10 0.25 0.50

] (8)

Note that each column of𝑀 represents the probabilities ofmutually exclusive events, which must

therefore sum to one. The matrix element𝑚𝑖𝑗 is the probability that today’s weather is in column

𝑗 and that tomorrow’s weather is in row 𝑖. For example, The probability of today being rainy and

tomorrow cloudy is given by𝑚23 = 0.40.

Let the column-vector 𝐰𝑘 represent the probabilities for a particular day’s weather and the

column-vector𝐰𝑘+1, the next day’s weather. The two are then related by:

𝐰𝑘+1 = 𝑀𝐰𝑘 (9)
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Equation (9)) is called a recurrence relation or difference equation, and in our case, it represents

the evolution of a dynamical system in time, namely the weather. Just for completeness, let the

initial condition be given by:

𝐰0 = [
0.55
0.34
0.11

] (10)

We want to know whether, for this model, there will be an equilibrium or steady-state in the

weather, represented by a probability vector with values that remain steady with temporal

evolution. The question is how do we find that out?

One obvious way is to compute the downstream weather one day at a time: think of forging a

chain one link at a time because the weather has a memory of only one day. From Equation (9)

we can compute the following:

𝐰1 = 𝑀𝐰0

= [
0.47050
0.33450
0.19500

]

𝐰2 = 𝑀𝐰1

= 𝑀(𝑀𝐰0)
= 𝑀2𝐰0

= [
0.42568
0.34615
0.228180

]

By induction, the weather vector 𝑛 days downstream is given by

𝐰𝑛 = 𝑀𝑛𝐰0. (11)

In this manner, we can trace the time evolution of the weather and, if desired, draw a three-

dimensional parametric plot of the successive weather vectors in ℝ3 with time as parameter. This

could be insightful, but it is a laborious and time-consuming way to find out the steady-state

weather vector if there is one. Could we do better?

A rough and ready method would be to evaluate Equation (11) with 𝑛 set to large numbers, say 50
and 100, and check if the resulting weather vectors,𝐰50 and𝐰100 were equal. If they were, we

might hazard a guess that this unchanging value is the steady-state weather vector.

But computing the fiftieth or one-hunderdth power of a matrix is tedious and error-prone if done

by hand, and computationally expensive if done by machine, especially if the matrix in question

is large.

To devise a better solution, we need to digress briefly to examine diagonal matrices and the

diagonalization of square matrices.
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Diagonal matrix raised to a power

Suppose that𝐷 is a 3×3 diagonal matrix with non-zero entries on its principal diagonal and zeros

elsewhere:

𝐷 = [
𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

] .

Observe that:

𝐷𝑛 = [
𝜆𝑛1 0 0
0 𝜆𝑛2 0
0 0 𝜆𝑛3

] . (12)

If we could somehow decompose𝑀 into a matrix product where a diagonal matrix was featured,

we might be able to circumvent the matrix-raised-to-a large-power problem.

Matrix diagonalization or eigen decomposition

We need to diagonalize the transition matrix—a procedure called eigen decomposition. A square

matrix with non-repeating eigenvalues and therefore, linearly independent eigenvectors, can be

diagonalized. We demonstrate how this is done for the 3 × 3 case below.

Let the three eigenvectors be so denoted:

𝐞𝑘 = [
𝑒𝑘1
𝑒𝑘2
𝑒𝑘3

] ; 𝑘 = 1, 2, 3.

The matrix 𝑃 whose columns are the eigenvectors is therefore

𝑃 = [
𝑒11 𝑒21 𝑒31
𝑒12 𝑒22 𝑒32
𝑒13 𝑒23 𝑒33

] = [𝐞1 𝐞2 𝐞3]

Now,

𝑀𝑃 = 𝑀[𝐞1 𝐞2 𝐞3]

= [𝑀𝐞1 𝑀𝐞2 𝑀𝐞3]

= [𝜆1𝐞1 𝜆2𝐞2 𝜆3𝐞3]

= [
𝑒11 𝑒21 𝑒31
𝑒12 𝑒22 𝑒32
𝑒13 𝑒23 𝑒33

][
𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

]

= 𝑃𝐷

(13)

To get only𝑀 on the left-hand side of Equation (13), we post-multiply both sides by 𝑃−1, the inverse
of 𝑃:

𝑀𝑃𝑃−1 = 𝑀𝐼 = 𝑀 = 𝑃𝐷𝑃−1 (14)
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If we now square𝑀, we get

𝑀2 = (𝑃𝐷𝑃−1)(𝑃𝐷𝑃−1)
= 𝑃𝐷(𝑃−1𝑃)𝐷𝑃−1

= 𝑃(𝐷𝐼𝐷)𝑃−1

= 𝑃𝐷2𝑃−1

(15)

By induction,

𝑀𝑛 = 𝑃𝐷𝑛𝑃−1 (16)

The role of eigenvalues and eigenvectors in the plot of raising a square matrix to a power is now

fully revealed: recall that in Equation (16), 𝑃 is the matrix whose columns are the eigenvectors,

and 𝐷 is the diagonal matrix whose non-zero elements are the corresponding eigenvalues, and

𝑃−1 is the inverse of 𝑃.

Software Implementation

To get numerical results, I initially tried implementing the above steps with the free open-source

mathematics software system SageMath, but found it less than convenient for my purpose.

I then experimented with GNU Octave, which is a free, platform-neutral, open source, high-level

interpreted language, primarily intended for numerical computations. It was better suited to the

task at hand, and I easily obtained the results discussed below.

The self-explanatory file, weather.m, may be downloaded and executed on the command line in

the Octave command window. The discussion below will make better sense after you have thus

executed the file weather.m. Instructions on how to download and set up Octave are given here.

Discussion of results from weather.m

The roots of the characteristic polynomial of𝑀 are first evaluated, and compared to the eigenvalues

and eigenvectors obtained from an Octave function designed for that explicit purpose.

There are three distinct eigenvalues for the transition matrix,𝑀. Moreover, it may be proved that

1 is an eigenvalue of any transition matrix. The eigenvalues we get are:

𝜆1 = 1.00000
𝜆2 = 0.48028
𝜆3 = 0.11972

FromEquation (16) wemay surmise that the contributions from 𝜆2 and 𝜆3, being both less than one,
will diminish progressively as 𝑛 increases, and in the limit, only the eigenvalue 1 will dominate

the steady-state behaviour.

The eigenvectors associated respectively with these eigenvalues, as spewed out by Octave, are:

𝐞1 = [
−0.65375
−0.61639
−0.43895

] 𝐞2 = [
−0.80430
0.28039
0.52391

] 𝐞3 = [
0.37921
−0.81582
0.43662

]
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None of the column sums of these eigenvectors sums to one. Indeed, the column sums of 𝐞2 and
𝐞3 are close to zero, whereas the column sum of 𝐞1 is negative. We will return to the eigenvector

𝐞1, to wrest meaning out of it, a little later. In any case, we confirm that𝑀𝐞1 = 𝐞1.

Assembling the matrices 𝑃 and 𝑃−1 from the eigenvectors is trivial, as is putting together 𝐷 as

the diagonal matrix of the corresponding eigenvalues. With these numerical values, the truth of

Equation (14) is also easily demonstrated.

The time evolution of the initial weather vector is then tracked with 1, 10, 20, 50, and 100 iterations

of Equation (9). In this case, the weather vector stabilizes after about twenty iterations to a

steady-state vector,𝐰∞, given by

𝐰∞ = [
0.38251
0.36066
0.25683

] (17)

When we track the same temporal evolution for eigenvector 𝐞1, the result after each iteration is

𝐞1 itself. This is the expected behaviour for an eigenvector associated with an eigenvalue of 1.

What may be disconcerting, though, is that we now seem to have two steady-state vectors,𝐰∞
and 𝐞1.

Observe, however, that 𝐞1 is not a probability vector whose columns sum to one. To convert it

to a probability vector, we normalize 𝐞1 by dividing it by its column sum, to get the normalized

eigenvector:

𝐧1 = [
0.38251
0.36066
0.25683

] (18)

Lo and behold! 𝐧1 and𝐰∞ are one and the same, and all is well. Recalling from Equation (7) that

non-zero scalar multiples of eigenvectors are also eigenvectors themselves, this result, even if a

little magical, really should not surprise us.

We do not bother normalizing the eigenvectors associated with 𝜆2 and 𝜆3 because their column

sums almost vanish, andmoreover, their contribution to the steady state decreases with increasing

number of iterations.

To round things off, we substitute a random initial weather vector in place of𝐰0, and view its

evolution over time for twenty iterations, and find that it too converges to the steady-state weather

vector after about 15 iterations.

This means that regardless of what initial weather vector we start with, in about two weeks we

will end up with a vector that represents the steady-state.

Observations like these suggest that our inferences are only as good as our assumptions and

models. Oversimplification could lead to absurd results, and weather prediction over time is a

seriously non-trivial problem.

One general hypothesis that we could examine is whether it is generally true that the normalized

eigenvector associated with an eigenvalue of 1 does indeed represent the steady state of the system
represented by any transition matrix. If so, we would have a theorem on our hands.
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Feedback

Please email me your comments and corrections.

A PDF version of this article is available for download here:

https://swanlotus.netlify.app/blogs/eigenvalues-and-eigenvectors.pdf
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