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Prologue

This blog is the sandwich filling between two blog-slices: The Exponential and Logarithmic

Functions and e Unleashed. It consists of a tetrad of captivating problems that are related to

exponents, which assumed centre stage after Euler showcased the number 𝑒 and explored its

facets in the eighteenth century.

Problem One: No solution or Too Many?

Once, while I was idly browsing the gallery of suggestions put forth by YouTube to grab my atten-

tion—and entice me to watch yet another video—I came across the rather tantalizing screenshot

simulated in Figure 1 below [1].

Figure 1: Simulated screenshot of a tantalizing equation beckoning solution on YouTube.
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We are told that

1𝑥 = 4 (1)

and asked to solve for 𝑥.

Even though the nature of 𝑥was not specified—whether it is positive or negative, an integer, a

non-integral rational, real, complex, etc.—this problem transfixed me. “Surely, the author must

be joking,” was my first thought.

But, try as I might, my mind militated against any solution. My thoughts ran like this:

1−2 = 1 1−1 = 1 1−
1
2 = 1

10 = 1 1
1
2 = 1 11 = 1

12 = 1 1𝑒 = 1 13 = 1
1𝜋 = 1 14 = 1 1100 = 1

Indeed, 1 raised to any power is 1, whether that power is zero, a non-zero integer, a positive

fraction, a negative fraction, or a transcendental number. It all boiled down to the standard

manipulation when faced with solving for exponents: take natural logarithms of both sides. In

this case,

ln(1𝑥) = ln 4
𝑥 ln 1 = 𝑥(0) = 0 ≠ 4.

So, the equation is a falsehood. And since a false statement can imply any statement, I could as

well claim that the moon is made of green cheese. On that note, I withdrew from the problem and

let my subconscious mind try to wrangle a solution.

There was one nagging refrain. Why was the base chosen to be 1? Was it to underscore the

impossibility of the equation at first sight, while keeping the door slightly ajar for a sneaky

solution? But, first a brief detour to re-visit the exponential and logarithmic functions.

The ln and exp functions for reals

The exponential and natural logarithm functions for real numbers are maps so:

exp ∶ ℝ → ℝ+

ln ∶ ℝ+ → ℝ

where ℝ+ = {𝑥 ∈ ℝ ∣ 𝑥 > 0}, i.e., ℝ+ is the set of positive real numbers.

When we deal with real numbers exclusively, we have unambiguous inverses for the exponential

and logarithmic functions as shown below:

ln(exp𝑥) = 𝑥 ; (𝑥 ∈ ℝ)
exp(ln 𝑦) = 𝑦 ; (𝑦 ∈ ℝ+)

For an illustration of this idea, see Figure 7 of my blog The Exponential and Logarithmic Functions.

But this is not the case once complex numbers enter the fray.
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To understand why, let us take a step or two back to review how points are depicted using co-

ordinate pairs.

Cartesian and Polar forms

The Cartesian co-ordinate system is a marriage between arithmetic and geometry. It allows any

point on a plane to be represented by a pair of numbers. What these numbers mean depends on

the context.

The number pairs may represent

(a) (𝑥, 𝑦) pairs corresponding to points on the graph of a real-valued function;

(b) co-ordinates on a map like a latitude and a longitude;

(c) the components of a two-dimensional vector; or

(d) represent the real and imaginary parts of a complex number.

Here, we will focus on the first and last of these interpretations.

Any point in two-dimensional Euclidean space or the Euclidean plane may be represented by an

ordered pair of real numbers. The first number corresponds to the 𝑥-coordinate and the second

to the 𝑦-coordinate. Note that order matters here because of the meaning attached to the two

numbers, as being distances along two named orthogonal axes.

But the Cartesian (𝑥, 𝑦) representation is not the only means to tie number pairs to positions.

Other methods are also possible. Take a look at Figure 2. The point labelled 𝑃 has positional

co-ordinates (𝑎, 𝑏). But it is located on a circle of radius 𝑟, and the line from the origin 𝑂 to 𝑃
makes a counter-clockwise angle of 𝜃with the positive 𝑥-axis. These two numbers 𝑟 and 𝜃may

also be used to define the position of 𝑃 as shown in Figure 2.

We may refer to 𝑃 as the point (𝑎, 𝑏), or as the point (𝑟, 𝜃). The equivalence between these two

representations is shown below and also in Figure 2:

𝑎 = 𝑟 cos 𝜃
𝑏 = 𝑟 sin 𝜃

𝑟 = √𝑎2 + 𝑏2

𝜃 = arctan (𝑏𝑎)

So, what is the advantage gained by using the polar representation? For a start, consider a circle

with the centre at the origin and a radius of 4 units. Its radius 𝑟 does not vary with angle 𝜃, and is

independent of it. Therefore, the equation of this circle is 𝑟 = 4, which is starkly simple, compared

with 𝑥2 + 𝑦2 = 16 using the (𝑥, 𝑦) representation.

Certain curves like the Lemniscate of Bernoulli are also more elegantly expressed and analyzed

using their polar equations. Simplicity, convenience, and clarity are useful advantages from the

polar viewpoint.
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Figure 2: The Cartesian (𝑎, 𝑏) and Polar (𝑟, 𝜃), representations of the same real, ordered pair in the
two-dimensional real planeℝ. See the text for a full discussion.
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But are polar equations an unalloyed blessing? No, they embody the cunning wolf of ambiguity

because the inverse trigonometric functions are multi-valued. If we are given only the value

arctan
𝑏
𝑎
we will not get a unique 𝜃 corresponding to it.

First, recall that the trigonometric functions like sin, cos, and tan are circular functions which are

naturally periodic with a period equal to one revolution of the circle or 2𝜋 radians. Refer to my

blog on Varieties of Multiplication for a quick review of the sine and cosine functions. You will

note therefrom that in each 2𝜋 period, there are two values of the angle for which the function

takes on a specified value.

Consider a concrete example. What are the angles 𝜃 for which tan 𝜃 = 0.5, or equivalently, solve
for 𝜃 = arctan

1
2
. One answer is 0.463647609 radians or 26.56505118° which lies in the first

quadrant. But there is a second answer that lies in the third quadrant: 3.605240263 radians or

206.5650512°.

Moreover, each of these answers, when augmented by a full rotation of 2𝜋 radians or 360° degrees

is also a solution. Therefore, not only do we have two solutions, but we also have an infinity of

solutions when we trace our way back from a trigonometric function to its argument or angle.

But is there a unique answer at all?

Given the value of a trigonometric function, determining the corresponding angle is what an

inverse trigonometric function does. But because the angle is non-unique, mathematicians have

devised a convention to restore uniqueness by restricting its range, calling the result the principal

value of the inverse trigonometric function. For example, the principal value of the arctan function

lies in (−𝜋
2
, 𝜋
2
).

The angle 𝜃 can take on an infinity of values. This non-uniqueness in the value of 𝜃 is something

we must never forget, especially when dealing with functions of complex variables and their

inverses.

The Complex plane ℂ

The Euclidean planemay also be used to represent complex numbers, in which case it is sometimes

called an Argand diagram. An arbitrary complex number 𝑧may be represented as a point on the

two-dimensional complex plane ℂ, as shown in Figure 3.

The horizontal axis represents the real part of the complex number and the vertical axis represents

the imaginary part. Two equivalent representations are commonly used for complex numbers:

(a) The Cartesian representation 𝑧 = 𝑎 + 𝑖𝑏, where 𝑖 is the imaginary unit, and 𝑎, 𝑏 ∈ ℝ. When

two complex numbers 𝑎 + 𝑖𝑏 and 𝑐 + 𝑖𝑑 are added, their sum is (𝑎 + 𝑐) + 𝑖(𝑏 + 𝑑), i.e., the
real and imaginary parts are added separately.

(b) The polar representation 𝑧 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃) is an equivalent representation for a complex

number, where 𝑟 = √𝑎2 + 𝑏2 = |𝑧| and 𝜃 = arctan
𝑏
𝑎
= arg 𝑧. Here, |𝑧| is called themodulus

of 𝑧1 and arg 𝑧 is called the argument of 𝑧.
1Not to be confused with modulo operations and remainders, or with clock arithmetic; this usage may be thought

of as the absolute value of the complex number or the Euclidean distance of the complex number from the origin.
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Figure 3: The same complex number 𝑧may be represented in Cartesian form as 𝑎 + 𝑖𝑏 and in polar
form as 𝑟(cos 𝜃 + 𝑖 sin 𝜃)where 𝑟 = √𝑎2 + 𝑏2 and 𝜃 = arctan

𝑏
𝑎
.
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Thus far, we have extrapolated to ℂ the development for ordered pairs on ℝ. This is fine, but
pedestrian, yielding no remarkable insights. The alchemy is yet to happen. For that, we need the

magic sauce of Euler’s formula.

The Euler formula

The remarkable Euler formula is

𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃 (2)

Don’t let its simplicity belie its power or impact.

The eminent Italian-French mathematician Joseph-Louis Lagrange called Euler’s formula 𝑒𝑖𝑥 =
cos𝑥 + 𝑖 sin𝑥 “one of the most beautiful discoveries in analysis made in this century,” [2]. The

famous physicist, Richard Feynman, extolled it as “the most remarkable formula in mathematics…

This is our jewel.” [3].

If you can spare the time to examine the formula, you will see that it unifies the trigonometric

functions with the exponential function: something that could not have been guessed merely

from their respective histories or applications. What is more, the imaginary unit sits smack dab

in the centre. It is an equation so unlikely that it beggars the imagination.

Yet, one might claim—without exaggeration—that its consequences are all around us in this

electrical age of digital communications, instant messaging, shared images, satellite navigation,

etc. How did this equation facilitate such mind-boggling progress?

Gifts from Euler’s Formula

The first gift from Euler’s formula is that the polar form of the complex number facilitates multi-

plication. Let 𝑢 = 𝑝𝑒𝑖𝜃 and 𝑣 = 𝑞𝑒𝑖𝜑. Their product 𝑢𝑣 is then

𝑢𝑣 = (𝑝𝑒𝑖𝜃)(𝑞𝑒𝑖𝜑)
= 𝑝𝑞(𝑒𝑖𝜃)(𝑒𝑖𝜑)
= 𝑝𝑞(𝑒𝑖(𝜃+𝜑))
= 𝑤𝑒𝑖𝜓

where 𝑤 = 𝑝𝑞 and 𝜓 = 𝜃 + 𝜑. This means that the modulus of the product of two complex

numbers is the product of their respective moduli and the argument of their product is the sum

of their arguments, as illustrated in Figure 4. See my blog Varieties of Multiplication for a more

detailed discussion.

The second gift from Euler’s formula follows on from the first. Multiplying a complex number by

𝑖 rotates it by 𝜋
2
radians counterclockwise on the complex plane. See the section rotation on the

complex plane in my blog The Two Most Important Numbers: Zero and One for an explanation.

Logarithms of complex numbers

Most high school mathematics courses stop at the real-valued exponential and logarithmic func-

tions. Indeed, the logarithms of complex numbers are either not taught at all at school or, if taught,

usually gently glossed over. The fact that the complex logarithm is a different kettle of fish escapes
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Figure 4: Illustration of how easy it is to multiply complex numbers using the Euler formula.
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most school-leavers. And books that devote enough time, rigour, and examples to this topic are

not easy to come by.

Personally, I cannot claim much familiarity with the topic myself, and had to spend some time

understanding matters from first principles, while I was researching for this blog.

Recapitulating, let 𝑧 = 𝑎 + 𝑖𝑏 be the Cartesian form of a non-zero complex number with 𝑎, 𝑏 ∈ ℝ.
Its polar form is 𝑧 = 𝑟𝑒𝑖𝜃 where 𝑟 = √𝑎2 + 𝑏2 and 𝜃 = arctan

𝑏
𝑎
. An alternative way to express 𝑧

is themodulus-argument form, which is 𝑧 = |𝑧|𝑒𝑖 arg(𝑧) = 𝑟𝑒𝑖𝜃. It pays to be proficient in using any

one of these three forms, and in being able to convert from one to the other with ease.

Let us keep in mind that the exponential and logarithmic functions are inverses of each other,

and start with:
𝑧 = 𝑒𝑤 ; take logarithms on both sides

ln 𝑧 = ln [𝑒𝑤]
= 𝑤
= ln (|𝑧|𝑒𝑖 arg(𝑧))
= ln[𝑟𝑒𝑖𝜃]
= ln[𝑟] + ln[𝑒𝑖𝜃]
= ln 𝑟 + 𝑖𝜃
= 𝑢 + 𝑖𝑣.

(3)

When the logarithm of a complex number is expressed in Cartesian form, the real and imaginary

parts are related so:

1. the real part is the logarithm of the modulus of the original complex number:

ℝ𝕖(ln 𝑧) = ℝ𝕖(𝑤) = ln|𝑧| = ln 𝑟 = 𝑢;

and

2. the imaginary part is the argument of the original complex number:

𝕀𝕞(ln 𝑧) = 𝕀𝕞(𝑤) = arg(𝑧) = 𝜃 = 𝑣.

So far so good. But the argument or angle of 𝑧, arg(𝑧), is non-unique because angles on a circle

repeat themselves after each revolution. As with inverse trigonometric functions, we again invoke

the idea of the principal value of the argument to overcome this ambiguity. If we denote the

principal value of the argument of 𝑧 by Arg(𝑧), we could write

arg(𝑧) = Arg(𝑧) + 2𝑘𝜋 where 𝑘 ∈ ℤ and Arg(𝑧) ∈ (−𝜋, 𝜋].

What does this mean geometrically or pictorially? The imaginary part of 𝑤, which is 𝑣, is not
just 𝜃 but really 𝜃 + 2𝑘𝜋 where 𝑘 ∈ ℤ. The imaginary part of the complex logarithm 𝑤 is not

unique, but is actually a series of points that lie along a vertical line parallel to the imaginary axis,

intersecting the real axis at 𝑢 = ln 𝑟. This is illustrated in Figure 5.

This means that the complex logarithm of a single complex number 𝑧maps onto multiple complex
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Figure 5: The logarithm of a complex number is not unique but multivalued. Its imaginary part, 𝑣,
may vary, as shown by the different dotted lines emanating from 𝜉 and terminating on the vertical
line 𝑢 = ln 𝑟. The principal value is shown in a different color and corresponds to 𝑘 = 0.
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numbers having the same modulus but different arguments, all differing by integer multiples of

2𝜋 on the complex plane, as depicted in Figure 5:2

ln(𝑧) = 𝑤
= ln [𝑟𝑒𝑖(𝜃+2𝑘𝜋)] where 𝑘 ∈ ℤ
= ln 𝑟 + ln [𝑒𝑖(𝜃+2𝑘𝜋)]
= ln 𝑟 + 𝑖(𝜃 + 2𝑘𝜋).
= 𝑢 + 𝑖𝑣 + 𝑖2𝑘𝜋.

(4)

This ambiguity makes the complex logarithm a multi-valued function, whose imaginary part is

not unique. For the sake of convenience and to confer uniqueness, mathematicians define the

principal value of a complex logarithm by constraining the principal value of arg(𝑧), denoted by

Arg(𝑧) to lie in a restricted domain like (−𝜋, 𝜋].

Back to Problem One

Euler’s formula—Equation (2)—offers a crafty way to inject complex numbers into problems

involving real numbers like Equation (1). The hope is that the solution space may be sufficiently

enlarged to afford a solution. But this will come at the expense of something: uniqueness will

yield to a multi-valued perspective.

Instead of looking at 1 as a real number, one could view it as a complex number with a zero

imaginary part:

1 = cos 0 + 𝑖 sin 0
= cos(0 + 2𝑘𝜋) + 𝑖 sin(0 + 2𝑘𝜋) where 𝑘 ∈ ℤ; 𝑘 ≠ 0
= 𝑒𝑖2𝑘𝜋.

Wemay then re-write Equation (1) as:

1𝑥 = 4
(𝑒𝑖2𝑘𝜋)𝑥 = 4
𝑒𝑖2𝑘𝜋𝑥 = 4 ; take natural logarithms on both sides

ln(𝑒𝑖2𝑘𝜋𝑥) = ln 4
𝑥(𝑖2𝑘𝜋) = ln 4 ; 𝑘 ≠ 0

𝑥 = ln 4
𝑖2𝑘𝜋 ; multiply by

𝑖
𝑖

= −𝑖 ln 42𝑘𝜋 where 𝑘 ∈ ℤ ∖ {0}.

Different solutions arise by assigning specific values to 𝑘. Let us set 𝑘 = 1. We then have the

solution 𝑥 = − 𝑖 ln4
2𝜋

.

Is this answer correct? It depends on the viewpoint. If the multi-valued nature of the complex

2Although the numbers 𝜉, and ᵆ and 𝑖𝑣 are shown sharing common axes, this is not an accurate representation.
One is the input; the other the output. There should properly be two sets of axes: one for the “𝜉 space” and another
for the “ᵆ + 𝑖𝑣 space”. Scarcity of space has necessitated this “hybrid” figure.
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Figure 6: One solution to the problem posed in Figure 1.

logarithm is understood, and we consider non-principal values, one at a time, our answers may

be invested with meaning.

If one did not bother to distinguish the single-valued logarithm function for real values from the

multi-valued logarithm function for complex values, the result would be confusion.

Since I work alone, I needed to sound out the larger mathematical community, especially profes-

sionals, to find out where this solution stands. Fortunately, there was another You Tube video

that proposed a similar problem [4]. The accepted solution there [5] is consistent with the above

development .

One other, non-human resource was available: Wolfram Alpha. I plugged in the solution above

and asked for simplification/verification. The reader may verify the output under “Multivalued

result”. It is to be noted that if 𝑘 takes on other integer values, the results will be other powers of

4 as tabulated, but that is a nuance left unexplored here.

Problem Two

The second problem led me to a function whose name I had never heard before. It is, I believe a

niche function, useful in special situations, but nowhere near as widespread as the mainstays like

the trigonometric or exponential functions. It was an enticing enough problem to draw me to it.

The facsimile screenshot is given below in Figure 7 and in Equation (5)

𝑡𝑡 = 7 (5)

Analytical solution

My first instinct on seeing the problem was to take logarithms and see where that led:

𝑡𝑡 = 7 ; take logarithms

𝑡 ln 𝑡 = ln 7
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Figure 7: Simulated screenshot of another tantalizing equation beckoning solution on YouTube [6].

It looks like we are getting nowhere.

Numerical solution

My second approach was to look at the equation carefully and guess the interval in which the

solution would lie. We know that 22 = 4 < 7 < 33 = 27. So, 𝑡 lies between two and three, and is

closer to two than three.

I used the Qalculate program on my desktop to evaluate 𝑓(𝑡) = 𝑡𝑡. Because 𝑓(2.3) =
6.791 630 075 < 7 and 𝑓(2.4) = 8.175 361 775 > 7, the solution lies in the interval [2.3, 2.4].

A bash script was written to compute values of 𝑡𝑡 and its difference from 7, as tabulated below.

These values gave the insight that the solution lay in the tighter interval [2.315, 2.320], denoted by

the change in sign of (𝑡𝑡 − 7).

t t^t (t^t - 7)
----------------------------------------
2.300 6.791630 -0.208370
2.305 6.854196 -0.145804
2.310 6.917412 -0.082588
2.315 6.981288 -0.018712
2.320 7.045829 0.045829
2.325 7.111044 0.111044
2.330 7.176940 0.176940
2.335 7.243524 0.243524
2.340 7.310803 0.310803
2.345 7.378787 0.378787
2.350 7.447482 0.447482
2.355 7.516897 0.516897
2.360 7.587039 0.587039
2.365 7.657917 0.657917
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2.370 7.729539 0.729539
2.375 7.801913 0.801913
2.380 7.875047 0.875047
2.385 7.948951 0.948951
2.390 8.023632 1.023632
2.395 8.099099 1.099099
2.400 8.175362 1.175362

It was tempting to use Typst for a better numerical estimate because it promised not only scripting

but also tabular typesetting: two birds with one stone—compute the values and get them tabulated

at one go. Alas, this approachwas found to be foolhardy and abandoned, because not all languages

are suited for heavy duty numerical computing. Moral of the story: do not use a fountain pen to

dig a trench. Match your tools for the job.

Newton-Raphson method The next logical step was to use a solid programming language like

Python or Julia and employ a technique like Newton-Raphson to refine the solution further so

that the error in (𝑡𝑡 − 7) does not exceed, say, 10−3.

For the Newton-Raphson method, we need to know the expression for both the function 𝑓(𝑡) and
its derivative 𝑓′(𝑡). The method relies on a linear approximation to the function 𝑓(𝑡) and uses the

update rule [7]:

𝑡𝑛+1 = 𝑡𝑛 −
𝑓(𝑡𝑛)
𝑓′(𝑡𝑛)

. (6)

How does one differentiate a function when the exponent is not a constant but a variable? As a

general rule, invite either exp or ln to the rescue.

We proceed as follows:

1. Observe that
𝑡𝑡 = 𝑒ln(𝑡𝑡)

= 𝑒𝑡 ln 𝑡.
(7)

2. Substitute

𝑢 = 𝑡 ln 𝑡

3. Then,
d

d𝑡𝑢 =
d

d𝑡 [𝑡 ln 𝑡]

= [ln 𝑡 + 𝑡 [1𝑡 ]]

= [ln 𝑡 + 1]

(8)
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4. Finally,
d

d𝑡 [𝑡
𝑡] = d

d𝑡 [𝑒
𝑡 ln 𝑡]

= d

d𝑡 [𝑒
ᵆ]

= 𝑒ᵆ [ d
d𝑡𝑢]

= 𝑒𝑡 ln 𝑡 [ln 𝑡 + 1]
= 𝑡𝑡 [ln 𝑡 + 1]

(9)

Using scipy The scipy software suite is ideally suited for heavy duty numerical computing.

It might be overkill for our case, but it usually affords a single-line program that does the job

admirably. Let’s heave ho.

import numpy as np
from scipy import optimize

def f(x):
return x**x - 7 # One real root between 2.315 and 2.320
””” Solve for x^x = 7
Arguments:

f: x^x - 7
fprime: derivative of f(x) = x**x * (np.log(x) + 1)
estimate: estimated value of root

Returns:
root: desired solution for x

”””

estimate = 2.315
root = optimize.newton(f, estimate, fprime=lambda x: x**x * (np.log(x) + 1))
print(root)
print(f(root))

A commented version of this short script is available as tt7.py. From this script, it should now

be clear why we needed to get the derivative of the given function in closed form. When the script

is executed, it outputs two numbers:

2.3164549587856125
1.7763568394002505e-15

The first is the value of 𝑡 that satisfies 𝑡𝑡 = 7, which is Equation (5). The second is the value of

(𝑡𝑡−7) at this value of 𝑡—it is an extremely small number about 1.810−15. With these two numbers,

we have effectively solved the problem. But there are two more approaches that I wish to pursue

to exhaust the methods that have suggested themselves to me. We next look at plotting graphs

and determining intersections.
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Graphical approach

Wemay graph the function 𝑦 = 𝑡𝑡 and the line 𝑦 = 7 and find out their intersection to whatever

degree of precision is available to us. Alternatively, we could also plot (𝑡𝑡 − 7) and find its root or

zero. Both will give us the same result, as illustrated in Figure 8, which was prepared using the

Typst typesetting system.

Figure 8: Graphs of 𝑦 = 𝑡𝑡, 𝑦 = 7, and 𝑦 = 𝑡𝑡 − 7 plotted on the same axes. The solution lies
approximately at 𝑡 = 2.32. We have taken some liberties in identifying 2.316 as the root, using our
previously computed numerical solution.

Apart from reduced precision, the graphical approach is a good complement to the rough and

ready estimation that the root lies between 2 and 3. A more precise estimate will necessitate

numerical methods.

The Lambert W Function

What I did not contend with at first was that there was a special function—known to Johann

Lambert and Euler—called the Lambert W function,3 that was tailor made for a problem like this

[8]. I was eager to pursue this as the third line of enquiry but was dismayed to find that tables of

the Lambert W Function [9] are not available as standard.

3Lambert died of tuberculosis at the young age of 49. He made many contributions to mathematics, cartography,
optics, etc., and was the first to prove that 𝜋 is irrational.

Copyright © 2004–2025, R (Chandra) Chandrasekhar 16

https://typst.app/
https://en.wikipedia.org/wiki/Johann_Heinrich_Lambert
https://en.wikipedia.org/wiki/Johann_Heinrich_Lambert
https://en.wikipedia.org/wiki/Lambert_W_function


A Tetrad of Captivating Problems

So, the Lambert W function approach, while technically elegant, is not necessarily convenient.

For the sake of completeness though, this method is outlined below.

The Lambert W function [10], also known as the product logarithm, is a special function that is

used to solve particular types of equations. It is denoted𝑊(𝑧), and is defined as the inverse of the

function:

𝑤 ↦ 𝑤𝑒𝑤 ; 𝑤 ∈ ℂ

So by definition:

𝑊(𝑤𝑒𝑤) = 𝑤 ; and
𝑊(𝑧)𝑒𝑊(𝑧) = 𝑧

This means that for any (complex) number 𝑤, the expression 𝑧 = 𝑤𝑒𝑤 maps to 𝑤 under the

Lambert W function. As with the complex logarithms, we are dealing with a multi-valued function

and need to be careful in what we do and mean.

Because the definition of𝑊 can sound a bit detached, let us apply it to our case to better tether it.

1. 𝑡𝑡 = 7. Take logarithms of both sides noting that ln 𝑎𝑏 = 𝑏 ln 𝑎.

2. We have 𝑡 ln 𝑡 = ln 7. Recall that because the exponential and logarithmic functions are

inverses, 𝑒ln𝑥 = 𝑥.

3. Substituting 𝑡 = 𝑒ln 𝑡, we have 𝑒ln 𝑡(ln 𝑡) = ln 7, which may be re-written as

ln 𝑡𝑒ln 𝑡 = ln 7 (10)

which has the form 𝑤𝑒𝑤 = 𝑧 that is used to define the Lambert W function, with 𝑤 = ln 𝑡
and 𝑧 = ln 7.

4. We now apply the Lambert W function, which performs a sort of inverse operation because

if 𝑤𝑒𝑤 = 𝑧, then 𝑤 = 𝑊(𝑧). So, 𝑤 = ln 𝑡 = 𝑊(ln 7) = 𝑊(𝑧).

5. We have ended up with ln 𝑡 = 𝑊(ln 7) and we only need to exponentiate both sides to get

𝑡 = 𝑒𝑊(ln 7). (11)

6. The Lambert W function finds application in many different scientific fields [8,11] but is not

so commonly used as to be tabulated like trigonometric or logarithmic tables.4 We therefore

have to rely on numerical computation, not unlike what we used in the previous section,

but with a different rationale. I tend to veer toward scipy in such cases, as it affords both

convenience, and a terseness bordering on beauty:

import numpy as np
import scipy.special as sp

W_ln_7 = sp.lambertw(np.log(7), k=0)
print(”W(ln 7) = ”, W_ln_7)

4I have since become aware of an online Lambert function calculator at a website worth visitng.
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t = np.exp(W_ln_7)
print(”t = ”, t)

Three points merit explanation:

(a) the natural logarithm is invoked by np.log;

(b) the integer 𝑘 = 0 denotes the principal value, since complex logarithms are involved; and

(c) the result will be a complex number, although we expect its imaginary part (denoted by 𝑗) to
be zero.

The program gives the results below, and as illustrated in Figure 9. The numbers check out and

all is well with the world.5

W(ln 7) = (0.8400379820358972+0j)
t = (2.316454958785612+0j)

Figure 9: The real solution to 𝑡𝑡 = 7 is given above.

Problem Three: Exponential Towers

The third problem involves Equation (12) which is also illustrated in Figure 10. It equates to the

number 4 the expression 𝑥 raised to itself indefinitely:

𝑥𝑥𝑥
𝑥𝑥𝑥

𝑥𝑥𝑥
⋅⋅⋅
⋅

= 4 (12)

For obvious reasons, the left hand side (LHS) is an infinitely iterated exponential or exponential

tower or a power tower. The dots at the end of the tower mean that the 𝑥 values continue without

end. Such an expression is formally called a tetration when the number of iterations is finite.

When I first came across Equation (12), I was merely intrigued by its form. A little pottering

around the subject, however, revealed that:

(a) Euler was familiar with such iterated exponentials;

(b) there is a small real interval for which the expression converges to a real value; and

5We will not here explore the existence or validity of complex solutions.
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Figure 10: This equation shows a power tower equation, discussed fully in the text.

(c) the Lambert W function may be used to establish the interval of convergence.

I had not expected such a serendipitous confluence of factors—all relating to 𝑒—from an equation

whose mere form had arousedmy curiosity. The interested reader is directed to online discussions

for more details on the subject [12–14]. The infinite exponential tower converges to a real value

for 𝑥 in [ 1
𝑒𝑒
, 𝑒

1
𝑒 ] = [0.065988, 1.444668]. I am in awe of the poetic beauty of the result: 𝑒 to some

power of 𝑒 defines the interval of convergence!

One other preliminary: Donald Knuth introduced the up-arrow notation for repeated but finite

exponentiation. Tetration, for example, is denoted by 2 ↑↑ 4 = 2 ↑ (2 ↑ (2 ↑ 2)) = 222
2
= 216 =

65, 536. Note that exponentiation associates to the left: 232 = 2(32) = 29 = 512.

Back to the problem. Is there a way to start? Because infinity is involved, removing or augmenting

the topmost exponent from the tower will not diminish its value. Therefore the entire tower of

exponents may be replaced by the value of the right hand side (RHS). We may therefore write,

assuming convergence:

𝑥𝑥𝑥
𝑥𝑥𝑥

𝑥𝑥𝑥
⋅⋅⋅
⋅

= 4
= 𝑥4 ; transposing the constant

𝑥4 − 4 = 0
𝑥2 − 22 = 0

(𝑥2 + 2)(𝑥2 − 2) = 0

(13)

Following on from Equation (13) we may assert that

(a) Factorizing: (𝑥2 − 2) = (𝑥 − √2)(𝑥 + √2) ⟹ 𝑥 = ±√2.

(b) Factorizing: (𝑥2 + 2) = (𝑥 − 𝑖√2)(𝑥 + 𝑖√2) ⟹ 𝑥 = ±𝑖√2.

The four solutions are: 𝑥 = ±√2 and 𝑥 = ±𝑖√2. We will restrict ourselves to real solutions, which

are the first two. Are they within the interval of convergence? We note that √2 = 1.414213 <
1.444668 = 𝑒

1
𝑒 . So, the only real solution is 𝑥 = √2, as shown in Figure 11:
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Figure 11: The real solution to the infinite exponential tower in Equation (12)

Problem Four: Imaginary to Real

I would like to conclude with the equation

𝑖−𝑖 = √𝑒𝜋 (14)

stated in the fifth section of the blog The Exponential and Logarithmic Functions.

Before that, I want to compute the logarithm of a negative real number, ln(−1).6 We know that

for real numbers, the logarithm maps ℝ+ to ℝ. So, ln(−1)makes a mockery of this function until

we relax the conditions and treat ln as the complex logarithm function.

Moreover, we have discovered from Figure 5 that a single complex exponential maps to multiple

complex logarithms, but any single complex logarithm will map back only to a single complex

exponential.

What value of 𝜃 in [0, 𝜋] will give (−1) for the value of 𝑒𝑖𝜃? The real part is −1 which equals cos 𝜃
giving us 𝜃 = 𝜋. Moreover, sin𝜋 = 0 giving us a zero imaginary part as required. So, we my write

ln(−1) = ln(𝑒𝑖𝜋)
= 𝑖𝜋.

(15)

So, ln(−1) = 𝑖𝜋. How could the complex logarithm of a negative real number be purely imaginary?

But, because Euler’s formula has worked its magic, that is simply how it is.

Now, a question arising from an afterthought. Is Equation (15) the only solution? By now, you

should have grasped that every argument of a polar complex number may be augmented by 2𝜋𝑘,
and the equation would still be valid. Therefore, the multi-valued, pedantically correct answer

would be:
ln(−1) = ln [𝑒𝑖(𝜋+2𝜋𝑘)] ; 𝑘 ∈ ℤ

= 𝑖(2𝑘 + 1)𝜋.
(16)

6These final problems will definitely be relaxing, compared to the previous ones.
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This result was known to Euler in 1739 after he developed his theory of complex logarithms [2].

Now for Equation (14). The angles 0, 𝜋
2
, 𝜋, 3𝜋

2
, and𝜋 are nodal on the four quadrants of the complex

plane and in the Euler formula. Can you hazard a guess what value of 𝜃will evaluate to 𝑖? The
Cartesian point (0, 1) on the complex plane corresponds to (1, 𝜋

2
) in polar form. So, 𝑖 = 𝑒𝑖

𝜋
2 where

we are taking the principal value. Let us use this in Equation (14) where 𝑒𝑧 is written as exp(𝑧) to
avoid double superscripts:

𝑖−𝑖 = exp [𝑖𝜋2 ]
−𝑖

; take logarithms on both sides

ln (𝑖−𝑖) = ln (exp [𝑖𝜋2 ])
−𝑖

= −𝑖 [𝑖𝜋2 ] ; note that 𝑖(−𝑖) = 1

= 𝜋
2 ; take exponentials on both sides

exp [ln (𝑖−𝑖)] = exp [𝜋2 ]

𝑖−𝑖 = 𝑒
𝜋
2

= [𝑒𝜋]
1
2

= √𝑒𝜋

and we are done. The solution is illustrated in Figure 12.

Figure 12: This is the principal value solution to the equation 𝑖−𝑖 = √𝑒𝜋 put up by Professor Benjamin
Peirce on his blackboard at Harvard University. We have something purely imaginary on the LHS and
something purely real on the RHS, courtesy of Euler’s formula.

To explore further

If you have found the foregoing a foreign language altogether, here are some alternative exposi-

tions that could ease your understanding.

Books and Online Posts

The online Libre Text Complex Variables with Applications by Jeremy Orloff [15] gives a clear

account of complex logarithms, illustrated with examples.
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The Wikipedia article on complex logarithms [16] is freely available online and has numerous

illustrations, examples, and references.

YouTube videos

1. Steve Brunton’s lecture on the Complex Logarithm. It is a little long, but is clear, well-paced,

authoritative, and goes beyond the scope of this blog [17].

2. A short, crisp, but complete YouTube video on the complex logarithm function by TheMath-

Coach is worth watching [18].

3. Another snappy but clear video on complex logarithms that is worth watching is by Xander

Gouws [19].

Epilogue

This is my first blog in which all the figures have been generated using the Typst typesetting

engine. It has been an exciting learning experience that has yielded rich and early rewards. If

you are interested, and like what you see, do give Typst a spin.
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