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The germ of an idea

My friend Solus “Sol” Simkin and I were flying to attend a conference of a learned society in
Budapest, and to kill time, were engaged in a discussion on mathematics education.

Sol said, “Mathematics has morphed rapidly and almost completely, starting from the nineteenth
century, into a towering discipline built with tier-upon-tier of abstractions. And that has robbed
the subject of any link with the common man, who still equates mathematics with calculation.

“Even my mathematical friends do not profess familiarity with the discipline as a whole. They are
experts only in their narrow turf of specialization. The wholeness of the subject can seldom be
grasped—Ilet alone appreciated—by mathematicians, to say nothing of the physicists, engineers,
and economists.”

As we rued wistfully the disappearance of generalists, I asked Sol what solution he would propose
to correct the situation.

“Start small,” he said. “Take a simple problem. Examine it afresh from several angles. Approach
the solution from seemingly different directions. Solve the problem. And show that all solutions co-
incide. Nothing will impress the young student of mathematics about the internal self-consistency
of the subject—built on logic granite—than this emergence of the same solution to the one problem,
tackled from different angles.

“Promise me that you would start writing along these lines so that young innocent minds are
reassured that the austere subject of mathematics also hides surpassing beauty. Expose the unity
of mathematics. Showcase its elegance. Highlight its awesome, almost mystical strength, wedded
to its alluring charm,” Sol made his request.

“What exactly do you suggest that I should do?” I quizzed him.

“If you are keen to pick up the gauntlet, let me spell it out for you”, Sol continued. “It is a shame
that when two canals are fed from the same river, the public is unaware that the water source is
the same.

There are many mathematical canals which are studied separately where students do not have
the slightest inkling that their origin is the same. Mathematics will become much easier if the
discrete and the continuous are studied together. But no! It is either discrete mathematics or
calculus and analysis. This disparate presentation of material makes the subtle unity underlying
mathematics difficult to grasp.”



ON BINET’S FORMULA

“Have a heart Sol for the poor critters doing the studying. Students of Computer Science study
Discrete Mathematics whereas students of Physics need continuum Mechanics and Analysis. We
cannot stifle everyone with material that adds to the academic load without a commensurate
return on their future professional needs.”

“You make an assumption that is not well-founded,” Sol countered. Not everything needs to be
plumbed to its uttermost depths. But the fact that two canals arise from the same mathematical
river must be made clear. To lose that conceptual connectivity is to impoverish education at the
expense of practical utility,” Sol concluded.

Harnessed to the goal

It was only on my return flight, after much pedagogical tossing and turning, that I hit upon a neat
little patch of mathematics that was both united and divided at the same time. To paraphrase Sol’s
expression, a single mathematical river that fed two different canals, with few if any knowing of
their common origin.

What I needed was to nail a core idea or anchor concept that would ensure that I did not stray
too far afield and yet, which assured that the necessary appreciation of unity did not escape the
reader. I could embellish as I felt inspired, but I should stay true to my course.

“I'will choose a decent problem and solve it in a variety of ways to exhibit the richness of mathem-
atics,” Itold Sol. “I will start modestly, and perhaps a little under-ambitiously. Your idea is one that
merits being worked upon time and time again to illustrate the self-consistency of mathematics.
This might very well make for a series of blogs all threaded on the theme of ‘many approaches
but one solution.’ I already have one example in mind. Let me work on it first,” I had replied.

“I will drive a peg in the mathematical ground using a single core idea.” I committed to Sol. “And
I will show its surprising linkages to different areas of Mathematics. How it will affect young
students, we will leave time to decide.”

And that is how this blog, on the derivation and proof of the Binet formula® for the Fibonacci
sequence? by different methods first came to be.

We begin with some necessary preliminaries.

Sequences and Recurrence Relations

We define N = {1, 2, 3, ...} as the set of natural numbers or positive integers. Throughout this blog,
the sequence index n will belong to the set of non-negative integers:

Ny = N U {0}

A real-valued sequence a is defined as a mapping from N, to the real numbers, R:

aZN0—>|R

!Binet is pronounced as bee-nay.
2Fibonacci is pronounced as fi-buh-naa-chee.
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To make explicit the dependence of a on n € N,, we may denote the sequence as (a,). This
notation, explicitly involving n, emphasizes that the sequence is an ordered list of numbers.

The defining characteristic of a sequence is its recurrence relation, explained below. You might
recall two sequences from your middle or high school days [1]:

1. An arithmetic progression, is a sequence with an initial term, a,, and a common difference d.
The n™ term of the sequence may be recursively defined as

a, =a,_;+d.

This is also called a recurrence relation. Any term in the sequence, except for the initial
term(s), may be defined by the term or terms preceding it. Not surprisingly, a recurrence
relation may also be called a difference equation.

2. A geometric progression, is a sequence with an initial term ay, and a common ratio r. It too
may be recursively defined by the recurrence relation

an = an_lr.

Classification of recurrence relations

The two sequences shown above are particularly simple but also very useful. In general, a linear,
constant coefficient sequence of order r has a recurrence relation defined as

Ap = C1Qp_1 + Clp_ + 30,3+ + Gy + (1)

If g(n) = 0, the recurrence relation is called homogeneous; otherwise it is non-homogeneous.

It should now be apparent that the arithmetic and geometric progressions are both first order,
linear, constant coefficient recurrence relations. The geometric progression is homogeneous. The
arithmetic progression a,, = a,_; + d is non-homogeneous as long as the common difference
d # 0. If d = 0, it too is homogeneous, but such a sequence will be boring, as all the terms will be
the same!

Recurrence relations and differential equations

The terminology used to classify recurrence relations is reminiscent of that used to classify differ-
ential equations. In this blog, we will restrict the scope of both recurrence relations and differential
equations to homogeneous, linear;, constant coefficient equations, which are shift-invariant. Their
underlying unity makes studying them together both insightful and productive.

What are the similarities and differences between these two mathematical objects?

A difference equation or recurrence relation embodies shifts S in the value of the index n in the
equation connecting terms of a sequence.

In a differential equation the derivative or differential operator, D, takes the place of the index
shift when equations of functions are strung together.
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Since differential equations are generally more familiar, let us first consider the equation y(x) =

P d . o

AX Its derivative is then d—y = D, = Ae** = Ay(x). The exponential e** is said to be an
X

eigenfunction of the differential operator D.?

e

Next, consider a sequence defined as a, = A" Its next term is denoted as S(a,) = a,4; = ! =
A1) = Aa,,. By analogy with differential equations, we may conclude that 1" is an eigenfunction
of the shift operator S associated with the sequence a,,.

We may infer that recurrence relations and differential equations are the discrete and continuous
analogs of each other, with their characteristics and behaviour mirroring this fact.

The Fibonacci sequence

Let us take the Fibonacci sequence, F : N, — N, as a concrete example.*

It is a sequence in which the current term is the sum of the two preceding terms. Historically,
there has been diversity in the choice of the first two numbers of the Fibonacci sequence that are
needed to fire up the rest. Some started with iy, = O and F; = 1, others with fy =1and Ff =1,
whereas Fibonacci himself started with i{ = 1 and K, = 2. The modern mathematical convention
we follow here is to start with Fy = 0 and F{ = 1:

F=0
F=1 Q)
Fn+2 = Fn+1 + Fl’l Wlth ne No.

This is a second order recurrence relation.

Using naive recursion on the recurrence relation to find the n Fibonacci number is expensive in
terms of time and computing resources. A formula for the n™ Fibonacci number is therefore an
attractive goal to work toward, and the French mathematician, Jacques Philippe Marie Binet, is
credited with its discovery, although it was known to other mathematicians like Leonhard Euler,
Daniel Bernoulli, and Abraham de Moivre more than a century earlier [2]. Such is the irony of
history.

The shift operator S is defined as S(F,) = F,,;. Then, Equation (1) translates to the operator
equation:
(S?=S—-DHF=0 )

where I is the identity operator (which leaves whatever it acts upon intact).

Now, we capitalize on the analogy between functions and sequences, between derivatives and
shifts: the differential equation for y(x) should mirror the recurrence relation for the Fibonacci
sequence.

3Kindly review the blogs Differential Equations and Eigenvalues and Eigenvectors—Why are they important? if
you need to these review concepts.

4In my earlier blog Euler Two with Julia, I have discussed programs written in the Julia programming language
that computed sums of the even-valued Fibonacci numbers whose values do not exceed four million. The interested
reader is directed to that blog.
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Replacing shifts with derivatives in Equation (1), we have the following:
3)

This substitution is formal: it preserves algebraic structure but not dimensional or analytic
meaning.

Using the differential operator D in place of the verbose di notation, Equation (3) may be rewritten
X
as:
(D>*-D-1)y=0. @

The recurrence relation, Equation (1), and the differential equation, Equation (3), are the discrete
and continuous analogs of each other. We will revisit this idea a little later in this blog.

The Characteristic Equation

Save for a difference in symbols, Equation (2) and Equation (4) are identical in form. The common
polynomial on the left may now be written as P(x):

P(x)=x*—x-1=0 (5)

where x is a dummy variable with no particular significance.

Equation (5) is called the characteristic equation and it applies to both difference equations and
differential equations.® Its roots hold the key to solving both types of equations.

The roots of the characteristic equation, denoted here by A, are the solutions to the difference equation
as well as the differential equation in their respective contexts.

Why is this so? As explained above in Recurrence relations and differential equations, the eigen-
functions of the differential operator are the exponentials, e**.° In like fashion, the eigenfunctions
of the recurrence relation, or shift operator, are A".

In other words, for the case of the quadratic characteristic equation with distinct roots, 1, and 1,,
FE, = A} + BX; and (6

and
y(x) = Aeh* 4 BehoX (7

where A and B are constants whose values satisfy the initial conditions. It is important to bear in
mind that this applies when the roots of the characteristic equation are distinct.”

The eigenfunction is the justification. Substitution yields the verification.

5The qualifications are: homogeneous, linear, second order, constant coefficient, shift-invariant equations.
6This has also been explained in my previous blog Eigenvalues and Eigenvectors—Why are they important?
’See my blog Differential Equations.
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Brief summary

Certain sequences lead to recurrence relations, which in turn lead to characteristic equations,
whose roots, raised to integer powers, lead to closed form expressions for the general term in the
sequence [3].

For certain types of differential equations, the solutions are furnished by exponentials raised to
powers that are the roots of the characteristic equation.

Deriving Binet’s formula

We use Binet’s formula to independently calculate the n™ term of the Fibonacci sequence for
a particular n, without being tethered to recurrence relations. We would then have solved the
puzzle of “what equation describes the terms of the Fibonacci sequence?”.

Equation (5) is the characteristic equation for the Fibonacci equation. When this quadratic is
solved, we get these two roots, say ¢ and ), so:

1 1
qo_§[1+\/§] and zp—z[l—\/g] ®
From Equation (6), the solution for the recurrence relation is:
E, = Ap" + By" 9

We now use the two initial conditions, Fy = 0 and F{ = 1 to determine A and B. This leads to:

=0
= A¢°® + By

0=A+B

B=-A and

F =1
= A¢p + By ; and substituting for B
=Alp -]

=2la+ve-a-v3)
1=A4V5

1

B=

H-
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The general term is therefore:

1
F=—

5

1+4/5

2

1+4/5
2

\/g 2
)

. 1_ﬁr

=L(
NG
= =@ -9
5

<|

and this is the formula bequeathed to us by Binet [4]. It not only looks daunting, it also seems
incredible. How can we get a whole number as the output from an expression involving irrational
numbers like \/E unless they cancel out in some way? This suspicion must inspire us to dig a little
deeper to unearth the magic.

Relationship with the number ¢

The symbol ¢, used above, is reserved for a special constant that occurs widely in Nature. It is the
value of an aesthetically favoured ratio, known from ancient times as the divine proportion [5] or
the golden ratio.

Let a line have a length of x + 1 units. That particular choice of the length x such that

x_x+1 ives rise to
1~ "x &
x? = x+ 1 or equivalently an

x2—x—-1=0.

This is the same quadratic as the characteristic equation for the Fibonacci sequence.

The solution of this quadratic leads to two roots, which from the quadratic formula, are

—b £Vb? —4ac

2a

. Substituting a = 1, b = —1 and ¢ = —1, we get the two roots to be
—(=D + 12 =4=D
2
_1 (12)
) [1 * \E]

~ 1.6180339887

and

]

_ —(=) - = 4D
2

2
~ —0.6180339887.

We also know that the sum of quadratic roots is —2 and the product of the quadratic roots is <.
a a

Therefore, we may assert that
p+yp=1 = Pp=1-—0¢. 14
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Moreover, .
pp=-1 = = —a (15)

Both these statements may be verified from Equations (12) and (13).

The characteristic equation x> — x — 1 = 0 may also be written as x> = x + 1, as is clear from
Equation (11). This means:
P=p+1

(16)
P=9p+1.

This equivalence will come in handy later. It allows us to linearize expressions involving the roots
of the characteristic equation in which a square term appears, and can lead to tractable solutions
where there might otherwise be none.

We may now re-write Binet’s formula using these relations thus:

n_ . n
F, = =9 a7
\5
" —(1—-9)"
F=2_"% (18)
\/5
n 1 "
(5 -
n

We are now ready to tackle proving Binet’s formula by three different methods. The first method is
called the Principle of Mathematical Induction, which is what we look at next.

Principle of Mathematical Induction

Proof by induction [6] is a time-honoured method of algorithmic proof, but it has one drawback:
we need the formula we are setting out to prove.

But how do we get that formula in the first place? Obviously by some other method or guesswork.
We have just used the characteristic equation to derive Binet’s formula; so this is of little moment
to us in this blog. But it is noteworthy that this lack is the Achilles heel of proof by induction,
which works well once we have a formula in hand.

Assuming that we do have a formula, proof by induction is logically clear and procedurally simple.
Let us go through mathematical induction step-by-step:

1. We need the formula® or mathematical statement we are trying to prove. It must be a function
of n € Ny. Let us call this formula P(n).

2. We must first verify that P(n) is true for n = 1 or some such starting value. This is called the
base case.

3. We then assume that P(n) is true for some k € N,. Why do we use k instead of n here?
Because we do not want to confound a variable we use in our proof—k in this case—with the

8See my blog Expressions, Equations, and Formulae.
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variable n in the problem statement. So, while k is just as arbitrary as n, we go out of our way
to use it to differentiate it from n. The symbol k is a placeholder in the proof that disappears
once the proof is complete. Think of it like a dummy variable in definite integration, for
example. The assumption we make in this step—that P(k) is true—is called the induction
hypothesis.

4. The next step is the meat of the method, called the induction step. In the language of math-
ematical logic, we need to prove that if P(k) is true, then P(k + 1) is also true, i.e.,

P(k) = P(k+1) (20)

where the symbol = stands for implies. Direct evaluation of P(k + 1) will usually suffice
as proof in this step.

Let us recapitulate. We have verified that P(1) is true in the first step. We have proved that if P(k)
is true, then P(k + 1) is also true in the third step. Substituting k = 1, this means that if P(1) is
true, which we have verified, then P(2) is also true. Substituting k = 2, since we know that P(2) is
true, it follows that P(3) is also true. And so on for all natural numbers, without end. There is an
unbroken chain of logic and numbers that links the truth of the first statement or base case with
the truth of all subsequent cases. This is the essence of proof by induction.

Proving Binet’s formula by induction

Let us now prove Binet’s formula by the principle of mathematical induction. To unclutter the
working, we will use the version of the formula shown in Equation (17).

1. Since the Fibonacci recurrence involves three consecutive terms, we need two base cases to
get the induction fired up. This is called strong induction. These base cases are:

(a) Substituting k = 0 in Equation (17), we have

1
E = — 0o_ ,,0
0 \/E[GD ¢]
=L(1_1)

Vs

= 0 as required.
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(b) Substituting k = 1 in Equation (17), we have

[o — 9]
1+\/_ 1—\/_l

1+\/§—1+\/_
2

s i

[
W

as required.

2. Assuming that Binet’s formula holds for F, and F,_;, we now show that it holds for F,; by
verifying that the recurrence yields the expected form:

Fey1 = B+ B,

1 [ — F] + 1 [o51 — 1]

T

= S[qo + kTt — gl -y

NG
1 (21)
[p" e+ 1) =9 (¥ +1)]
\/E
[(@k D) = @ HH)]
s
1

Vs

The magic in the second last line of Equation (21) is because of Equation (16).

k1 — k+1] as required.

3. This completes the proof by mathematical induction. We have verified two base cases, k = 0
and k = 1, by direct evaluation of the Binet formula. The induction step involves k = 2.
Since it holds for k = 2, it will hold for k = 3, and so on.

Just for curiosity, we could directly substitute k = 2 in the Binet formula to verify that it really
holds, since we know from the sequence that F;, = 1:

B=— o= v
- Elasver-a-var]

_ 145
45 1

= 1 as required.
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The Generating Function

A generating function is a clothesline on which we hang up a sequence of numbers for display.
—HERBERT S WILF
generatingfunctionology [7]

The generating function [3,7] of a sequence provides a second method for deriving a formula for
the n™ term of the Fibonacci sequence. The characteristic equation will again pop up along the
way, once again establishing its centrality to the process.’

We know from Equation (1) how the Fibonacci sequence may be written. Suppose we want to
define a power series F(x) as a polynomial whose coefficients are the Fibonacci sequence—which
is the generating function—we may write:

F(x) = Z E,x". (22)
n=0

Because F, = 0, we may also write Equation (22)—with n starting at 1 rather than 0—as

F(x) = ). Fx". (23)
n=1

Moreover, since i; = 1, we may also write Equation (23) as
0
F(x) = xFK + Z E,x"
n=2

=x(1) + ) Ex" (24)
n=2

o0
=x+ Z E,x".
n=2

Using the Fibonacci recurrence, and keeping Equations (22) and (23) in mind, we may write

°In the process of researching for this blog, I came across a post by Austin Rochford [8] that is well written and
that mirrors almost exactly the approach I had in mind.

Copyright © 2004-2025, R (Chandra) Chandrasekhar 11


https://en.wikipedia.org/wiki/Generating_function
https://austinrochford.com/posts/2013-11-01-generating-functions-and-fibonacci-numbers.html

ON BINET’S FORMULA

Equation (24) as

F(x)=x+ i(Fn—l + B _p)x"

n=2
o0 o0
=Xx+ Z E,_1x" + Z E,_,x"
n=2 n=2
o0 o
=x+x ) F_x" 14+ x2 ) F,_,x"2
n=2 n=2
) ) (25)
:x+xZan”+x2 Zan"
n=1 n=0

= x + x[F(x)] + x*[F(x)]
F(x) — x[F(x)] — x*[F(x)] = x

FX)[1-x-x*]=x
x

FO =1

Equation (25) is the equation of the generating function F(x). Let us assign its denominator to be

Q(x):
Qx)=1—-x—x2 (26)

Observe that Q(x) in Equation (26) resembles the polynomial P(x) of the characteristic equation:
Equation (5). Indeed, if the solutions of P(x) = 0 are ¢ and 1, the solutions of Q(x) = 0 are —¢
and —1. This is shown in the graphs of these two quadratics below:

From Figure 1, we know that the roots of Q(x) are —p and —¢), i.e.,

Q(x) = k(x — (=))(x — (=¢))
= k(x + @)(x +9)

The constant k is necessary to ensure that we get the correct parabola out of countless ones with
the same two roots. At the point (0,0),'° we have from the graph Q(0) = 1 = kg = k(-1)
because gy = —1 from Equation (15). Therefore, k = —1 and

Q(x) = —(x + p)(x + ). 27

So, the partial fraction expansion of F(x) may be written as

FO =1
_ X
o o8
G+ (x+9)
A B

T,

10The same result could have been obtained by use of the quadratic formula.

Copyright © 2004-2025, R (Chandra) Chandrasekhar 12


https://www.wolframalpha.com/input?i2d=true&i=Power%5Bx%2C2%5D%20-%20x%20-%201%20%3D%200
https://www.wolframalpha.com/input?i2d=true&i=1%20-%20x%20-%20Power%5Bx%2C2%5D%3D0

ON BINET’S FORMULA

The curves P(x) and Q(x)

P(x)=x*—-x—-1——
Qx)=1—x—x?

@ =1/2(1 +/5) ~ 1.6180339887
® =1/2(1 - /5) ~ —0.6180339887

Figure 1: A comparison of the plots of the curves P(x) and Q(x). The x-axis intersections of these
curves have opposite signs and are switched laterally. P(x) is the characteristic polynomial of the
Fibonacci sequence. Q(x) is the denominator of the rational polynomial defining the generating
function.
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It follows that
—x =A(x+9Y)+B(x+ ) (29)

By substituting well-chosen values for x on both sides of Equation (29), we may reduce the solution
of two simultaneous equations into the independent solution of two simple equations. We need
values of x that set either (x + ) or (x + @) to zero.

If we set x = —1, we get
—(—=¢)=Blp—19)
_ ¥
B= p—19 (30)
_3
V5
Likewise, if we set x = —¢, we get
—(-—p) =AW -9
__9?
4=35 (3D
P

Vs
Substituting into Equation (28), we get Equation (32)

Foo=L[ ¥ __¢

NG X+ x+¢

(32)

which when properly expanded will give us our generating polynomial for the Fibonacci sequence.
But that is not our goal. Binet’s formula is.

Algebra versus Analysis

We now need to digress a little so that we may progress toward our goal. It requires a change in
our mathematical perspective. In the context of the sum to infinity of a geometric progression
or a power series like a Taylor series, we are concerned about something called the radius of
convergence [1]. The equation we are looking at is:

1 o0
1_x=Zxk=1+x+x2+x3+x4+.... (33)
k=0

where convergence occurs when |x| < 1. This statement is valid from the viewpoint of power
series and analysis.

In our case, though, justification using this logic is a little slippery because convergence cannot be
asserted.

So, we need an approach where the equality is claimed based on algebraic manipulation within
the ring of formal power series, [[R]] where convergence is irrelevant but where unique inverses
for series with nonzero constant term are guaranteed.

Without getting too deep into formal power series, we can look at Equation (33) as an algebraic
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equivalence. This means that the RHS of Equation (33) is simply another way of writing —
The x is called an indeterminate, rather than a variable that can take on numerical values. It is
simply a symbol or placeholder in an algebraic expression.

The applicable constraint is that a formal power series f(x)

f(x)= Z apx"
n=0

has a unique reciprocal if and only if ay # 0 [7]. This constraint is met by Equation (33) where the
coefficient of x° is 1.

If we multiply both sides of Equation (33) by ﬁ, we get

1=(1-x) ), x. (34)
k=0

o0
From Equation (34) we infer that the infinite series Z x¥ is the multiplicative inverse or reciprocal

k=0
of (1 — x). Plain long division on the LHS of Equation (33) would also lead to its RHS.

You might think that this is quibbling over trivial matters. But it is not. Operations are either
meaningful and allowed, or nonsensical and disallowed, depending on strictly defined contexts.
The same symbols may be used for variables and placeholders: the former can taken on numerical
values; the latter are symbols that could as well have been replaced by pictographs.!

Towards Binet’s formula

With that out of the way, we can work on the RHS of Equation (32). Using Equation (15)

i 1 - 1
= —— ; substituting ) = ——
x+y 142 A
¥

1
1—
) 2 (35)
2, ()™

k=0
00
— Z qann_
k=0

1T have digressed thus far because I found the mathematical justification for Equation (33) on the basis of geometric
series questionable where convergence cannot be asserted. It was only upon digging deeper did I stumble upon a
different way of looking at the same expression. And the second viewpoint is the child of abstract algebra, which
would not have found its way into most high school mathematical syllabuses.
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Similarly,

i —L'substitutingqo— 1
x+e 1437 P
@
1

1—x3y

[(0e]

D (xp)n

k=0

Z P"x".

k=0

Substituting into Equation (32) we get

_ e @

Fx) = [x+zp_x+qo]

[ ¢nxn _ Z ¢nxnl
k=0 k=0

> gt — ]

[p" — "] x"

1
05
which, after equating coefficients of x gives us

" =P

Vs

[p" — "] x"

k

B,

which is Binet’s formula as expressed in Equation (10), and we are finally done.

The Linear Algebra route

(36)

In the Fibonacci sequence, each term is defined as a linear combination of the two preceding
terms. This alone should alert us to the possibility that the sequence may be constructed using

linear algebra and matrices. And we would not be wrong.

Indeed, Strang [9, pp 340-341], derives the Binet formula from first principles using only the

Fibonacci recurrence relation, Equation (1).

I will largely mirror Strang’s development to demonstrate the third way in which Binet’s formula

may be derived. Whether or not “all roads literally lead to Rome today”, all derivations lead to the

same formula of Binet.
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Vectorizing the recurrence formula

The equation E, ., = F,,; + F, is a scalar expression which has two input terms on its RHS, and
one output term on its LHS. How may we recast this expression using vectors and matrices?

We may write
E
F — 1 1 n+1
[
but apart from complicating the notation, it yields us little by way of economy, efficiency, or insight.
It appears contrived simply to accommodate vector-matrix notation. We need to dig deeper.

We could start by defining a two-dimensional vector for the two input terms so:
E
u, = l n+ll (37)
F,
in which case, the vector for the output should be:

E
Uy = l F””l (38)
n+1

Note that because F,,; is part of the input, its value is already known. The only missing ingredient
is the matrix A to give us the vector-matrix equation

U, = Au, (39)

Let us formally solve for A by setting it to be

a b
A—lc dl 40)

We then have F,,, = aF,,; + bF, = F,,; + F, giving a = 1 and b = 1. But what about the second
term? Note that the second component of the output is by definition F,, ;. So, the second equation
isF, ;1 = cF, ;1 + dF, givingusc = 1 and d = 0. The matrix A is therefore

11
A—ll 0] 41)

and we have now vectorized the Fibonacci recurrence relation.

Let us recapitulate for a moment. The input is naturally a two-dimensional vector, u,,. To ac-
commodate the vector framework, we have deliberately cast the output as a two-dimensional
vector as well: u,,,;, whose first component is F,, , and second component is F,, ;. This notation
is consistent with the definition for the vector u,,, .

But what is F,,; on the LHS? Have we introduced something extraneous? Why, it is an input
on the RHS in Equation (37), and therefore comes already defined. We have not introduced any
extraneous relationships into the original recurrence equation.

By introducing F,,; not only as a given input variable, but also as part of the output, we have
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vectorized the Fibonacci recurrence. This leap of the imagination—where both input and output
are two dimensional vectors—is key to reformulating the Fibonacci recurrence as a matrix equation.
This point might be glibly glossed over, but the change in perspective it entails is vital to vectorizing
the equation as shown in Equation (39).

1 1
uy = [Ol S Ll (42)

Each term of the Fibonacci recurrence is the result of pre-multiplying the previous term by A.
Therefore, the n™ term is given by

The initial conditions are

Obtaining the eigenvalues

u, = A"u,. (43)

To enable efficient evaluation of A", we need to diagonalize A. For that we need the eigenvalues
of A, which are the roots of the characteristic polynomial of A, given by

det(A — AI) = 0.

The algorithm is as follows:

1. The 2 X 2 identity matrix is given by

2. The matrix (A — Al) is

1-1 1
A—-A = .
3. The characteristic polynomial is given by
det(A — AI)
=1-1)(=1)-1
=2-21-1

=0.

But this polynomial is just P(1) in Equation (5). From Equation (8), we know the roots of this
polynomial to be ¢ and .

Itisinteresting to note that in both instances, this polynomial is called the characteristic polynomial,
although it has arisen in different mathematical contexts. Even more interesting, it is the same
polynomial.
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Determining the eigenvectors

We know that the eigenvalues of A are ¢ and ¢ as defined in Equation (8). Let

alt

be the eigenvector corresponding to the eigenvalue ¢. Then, because

(A—gle, =0,

[t

The two equations arising from this are:

we have:

1-@pa+b=0
a—@b=0.
The second equation shows that a and b are linearly dependent, i.e., we may freely choose the

value of b for our convenience, and that will determine the value of a. In this case, we choose
b =1 and that gives us a = ¢. Therefore, one eigenvector is

®p
= . 44
Uy l 1 ] (44)
Likewise, the other eigenvector is
Y
= . 45
Uy [1 45)

Diagonalizing the matrix A

In my blog Eigenvalues and Eigenvectors—Why are they important? I have explained how to
diagonalize a square matrix with distinct eigenvalues, as in the present case. I will use the notation
from that blog, except that the matrix M there is now our matrix A here.

The algorithm is:

1. The matrix P has columns that are the eigenvectors, i.e.,

P:V ?.
11

2. The inverse of P, denoted by P~ is[10]

-1 _ 1 1 _z)b
d _¢—¢L4 @l

3. The diagonal matrix D is the one whose diagonal entries are the eigenvalues. In our case,
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this is
p=1|? °].
0 9
4. We assert that!?
A = PDP!
A" = pp"p1

5. Recall from Equation (43) that

u, = A"y,
= PD"P~lu
1 [e 9lfem o1 —9][1
Te—9[1 1][o y*[[-1 ¢ ]|O
1 -qol’H-l ¢n+ll [ 1 _zp 1]
o9l Y || 0
p— | ¢ 4 ¢ 46)
1 q0n+1 _¢n+1 _¢n+1¢ + ¢n+1¢ [11
Co—Y| et—yt o™ + 9" []0
1 '¢n+1 _ ¢n+1
- -1 i §0n _ lpn l
— Fn+1
E, |
6. The last line in Equation (46) comes from the definition of u, in Equation (37). Equating
components,
1
F = n_ ,yn
1 n n
= —[¢" —9"]

Vs

which is again Binet’s formula as stated in Equation (10), derived this time using linear
algebra.

7. The matrix A when raised to the n™ power actually embodies the n™ and surrounding terms
of Fibonacci sequence in its very entries. This will be discussed further in the section The
Companion Matrix below.

This entire method generalizes naturally to any linear recurrence with constant coefficients.

Points to Ponder

It has been a long and arduous trek to get here. The wonder is that although the routes we took
were mathematically different, the destination that we reached has been the same in all three
cases. This is because the edifice of mathematics is logically consistent and unshakably strong. It
is built to endure.

12See my blog Eigenvalues and Eigenvectors—Why are they important?.
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In this section, I have penned the thoughts that occurred to me while I was writing this blog. When
computing Fibonacci numbers—especially using Binet’s formula—we need to bear in mind a few
computational considerations.

For example, because of the \/g in Binet’s formula, when we compute it programmatically, we are
forced to use floating point arithmetic, which does not output integers. We must use a rounding
function to get the Fibonacci integers correctly.

Approximation

Binet’s formula holds within itself a rough and ready approximation of the n™ Fibonacci number.
Of the two numbers in the Binet formula, |¢| > 1, whereas || < 1. The question then naturally
arises, “When may we ignore the second term?”, whose absolute value is

l)bl’l
\5
The greatest value of the above expression is when n = 0 when it equals L~ 0.44721 which is

Vs

less than 0.5. Therefore, we may drop the second term for all values of n.

Accordingly, we may use

B,

Q

round[%]
roundl% 1 +\/§]nl

for all values of n. Note that round stands for the rounding function.

47

Precision and accuracy

When a computer program is written in any language there are several constraints to bear in
mind:

(a) Total memory available on the machine;
(b) The size of the largest integers or floats that are supported in that language; and

(c) Whether floats are used instead of integers, because their representation in binary is not
always exact.

While Binet’s formula is a time-saver, it is not particularly suited to computational accuracy. The
reason is the appearance of the irrational number \/E in Binet’s formula which forces any program
implementing it to use floats. For example, a standard double precision provides about 15 decimal
digits of precision.

Estimating the limits of precision is a little tricky because it is dependent on the machine, the
programming language, and its implementation. The limits will occur in the vicinity of the

13See my blog The Two Most Important Numbers: Zero and One if this statement sounds cryptic to you.
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Fibonacci numbers that are fifteen digits long. We estimate the number n associated with the
limits of precision by requiring:

E, ~ 10%
gon
V()
- log,,(10'%) + log, ,(v/5)
log, ,(¢)

; taking logarithms
(48)

~ 73.447

The Fibonacci numbers having fifteen digits are for values of n € {69, 70,71, 72,73} [11,12]. We
therefore expect computational errors to start manifesting from numbers in the above set. Note
that our calculated value of n = 73 occurs at the high end of this band. Observe also that for
n > 74, the Fibonacci numbers are 16 or more digits long, as demonstrated in the tabulation
below.

The Julia script recur-binet-seventy. jlillustrates the onset of rounding errors in my computer
implementation:

n Recurrence Binet Approximate Binet
69 117669030460994 117669030460994 117669030460994
70 190392490709135 190392490709135 190392490709135
71 308061521170129 308061521170130 308061521170130
72  498454011879264  498454011879265  498454011879265
73 806515533049393 806515533049395 806515533049395
74 1304969544928657 1304969544928660 1304969544928660
75 2111485077978050 2111485077978055 2111485077978055

The Fibonacci number F;; has 15 digits: 308,061,521,170,129 and the errors start manifesting at
n = 71 as shown above. We were in the right ball park as far as the estimation in Equation (48) is
concerned.

Note that the values put out by the approximation in Equation (47) and the full Binet formula are
identical in the above table.

But what is the remedy for the slippage in accuracy?

We resort to the types BigInt and BigFloat provided by Julia with a configurable precision
in bits. The code is available in the file recur-binet-comp-big. jl. The output from this file
confirms that the first one huncred Fibonacci numbers are the same whether computed by the
recurrence formula or by the Binet formula. We have thus overcome the limitations in precision
and accuracy, at least for the first one hundred Fibonacci numbers.

The Companion Matrix

There is, in addition, a sneaky method by which we may implement the recurrence formula using
matrices: it is solely integer-based and does not suffer from floating point rounding errors. And it
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may be optimized for speed.

The matrix A is called the companion matrix for the Fibonacci sequence [13]:

— n
u, = A"u,

Fal _[1 1] (49)
E, | [1 o] |o
Surely, the powers of the matrix A must encode the Fibonacci numbers within themselves in

order to generate the entire sequence as n is varied. We tabulate below five values of n for which
the matrix A" has been evaluated.

A1_11'
|1 0
|21

11
A3_32'
2 1]
A4_53'
3 2]
5|83

5 3

The pattern that emerges leads us to infer that

An — [Fnﬂ Fn l (50)
Fl’l Fn—l

which may be proved by induction, by harking back to Equation (1).

So, the matrix A" gives us three values for each exponentiation. The new value F,, is the matrix
entry at the first row and column at the top left hand corner, conventionally referred to as a;;.

If we can raise the integer-valued matrix A to the n™ power, we will have at our fingertips a
method to compute the n™ Fibonacci number on demand, bypassing inaccuracies arising from
floating point arithmetic.

A Julia script to do just that is available as fibonacci-matrix. jl, and it has been used to compute
the first one hundred Fibonacci numbers correctly, thanks to integer arithmetic and fast matrix
algorithmes.

The perceptive among you might have realized that we are really using the original definition
of Equation (1) here, and you would be correct. This method is attractive simply because linear
algebra has spawned many efficient algorithms that make matrix computations fast and reliable
in comparison to naive recursion using the original recurrence relation.

Integers from irrationals?

The Fibonacci sequence is composed entirely of integers, whereas Binet’s formula embodies the
irrational number \/E as its centrepiece. How is this possible? How can a discrete recurrence
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relation formula involving only integers have a closed-form solution involving irrational numbers?
Is there any guarantee that we will not get an irrational Fibonacci number?

The answer is a resounding “Yes!”. There are three ways to look at this, outlined below.

Recurrence Relation

The defining recurrence relation itself, Equation (1), enforces each Fibonacci number to the be
the sum of the preceding two integers. Because addition among the integers is a closed operation,
the result is also guaranteed to be an integer.

Exponentiating the Companion Matrix

The top left entry of A" is the value of F,,,. Since Matrix A starts out as shown in Equation (41)
and since its entries are composed of multiplications and additions of integers which are closed
for the integers, we again have a guarantee of integer-valued Fibonacci numbers.

Algebra of the Binet formula

While the above arguments are solid, the presence of \/E in Binet’s formula does give rise to room
for doubt. Let us backtrack a bit to better understand Binet’s formula from the standpoint of
abstract algebra, albeit without too much jargon. Note that the unnumbered equations below
have all been encountered before; only the new ones are numbered.

1. In its literal form, Binet’s formula, Equation (10), is:
n n
1 ([1+4/5 1-4/5
E=—||——]| - |—— .
Vs 2

2
This is purely a sum, quotient, and exponentiation of numbers that needs to be evaluated for
any given n € Ny. The only variable is the exponent n. Also, note the generous presence of
the irrational number \/E in the numerator and denominator of the expression. Our goal is
to prove to ourselves, unlikely though it might seem, that this expression will always evaluate
to an integer.

2. The first step is to make the substitutions

Binet’s formula may now be written as

" —P"

Vs

B,

3. The second step is to observe that (p — ) = \/E . If we substitute \/E with this expression,
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10.

we end up with [14]:

E, =

__¢n] (51)

p=9 |

. We are used to replacing symbols with numbers when evaluating formulae. But why would

we proceed in the opposite direction and replace perfectly clear numbers with symbols? This
change of viewpoint converts a purely numerical exercise into fodder for abstract algebra.
To appreciate the logic, we need to digress a little to review the idea of a polynomial.

. In high school and early university, we have known polynomials as expressions containing

variables that can be used to solve equations and graph functions. Untethering polynomials
from these tasks frees us to view and study them as mathematical objects in their own right.
And the insights therefrom are rewarding.

. In abstract algebra, a polynomial represents a structure in which two elements—the coeffi-

cients and the something else—are multiplied together and summed. This generic polynomial
may be defined as
FrER " e RE+ R

wherer, ..., € C and n € Ny while ¢ is undefined [15]. We call ¢t an indeterminate.

. Why such a contrived definition? To facilitate a deeper study of the polynomial bereft of

its utilitarian underpinnings. The polynomial is simply a sum of products where one of the
multiplicands is a complex number.'* The other multiplicand may be generalized. The set of
polynomials so defined forms what is known as a ring of polynomials, C[t]. [15].

. How did we get ¢ and 1? They are the two distinct roots to the equation P(x) = x>—x—1 = 0,

which is a non-zero polynomial having only integer coefficients. Because the coefficient of
its highest degree term—also called the leading coefficient—is one, P(x) is called a monic
polynomial.

. Now, for any quadratic equation ax? + bx + ¢ = 0, with roots « and ﬁ we know that the

sum of the roots (¢ + ) = — Y and the product of the roots, (a8) = -. In our case, the
roots of P(x) = 0 are the numbers @ and 3. Note that because the coefficients of P(x) are
known—even if we do not know the values of ¢ and 1)—we do know the sum and the product
of the roots as:

—(=1)

1

1
¢pp=—=-L

This is something quite powerful, even if under-recognized. The known coefficients of the
polynomial tell us something about the unknown roots even before the equation is solved.

p+y= =1

When we do solve for P(x), as already known, we get two distinct roots

1+4/5

2
4=1o08

¢=

14Complex numbers also include real numbers.
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11.

12.

13.

14.

Although these roots of P(x) = 0 embody the irrational number \/E they are called, believe
it or not, algebraic integers because P(x) is a monic polynomial with integer coefficients.

We have now converted the Binet formula from a number needing to be evaluated into a
ratio of polynomials in ¢ and ¢, even though they are both numbers themselves rather than
variables. In any other context, if we had talked of a polynomial where the “variables” are
numbers, it would have been laughable. But the vantage of abstract algebra allows us to do
this to better understand the algebraic structure of the expression. We can now view F,, as a
polynomial in two indeterminates [15]

Let N(p,9) = ¢" — 9" and D(¢, ) = ¢ — 1 be the numerator and denominator polynomials
in Binet’s formula. If we interchanged ¢ and 3 in each of them, we will get the negative of
the original:

N(p,p) = ¢" — 9"

N, ) =9" —¢" = —(¢" —¢") = =N(p, ¥)

D, h)=p—7

D) =9 -9 =—(¢—9¢)=-D(p, ).

Because of this change in sign, both N(¢, %) and D(g, ) are called alternating or anti-
symmetric polynomials. But when we take their quotient, the two changes of sign in the
numerator and denominator, cancel out and the result is a symmetric polynomial:

N(p,9) ¢”—¢”] _N@,p) [P ="

J@D =56 "l o=v | " De | 9=0

|=rw.00

As written in Equation (51), Binet’s formula is now a quotient of polynomials which, taken as
a whole, is symmetric, not in some unknown variables, but in the known algebraic integers
@ and ¥ as “indeterminates”. We may re-verify this symmetry by interchanging ¢ and  to
get the original polynomial again, by multiplying both numerator and denominator by <_—i)

flp, ) = _%} ; multiplyby<_—i)
_ [ 1" —z/)”)]
| e —19)
_[¥" —qo”]
| -9
= f(®, ).

Binet’s formula is a symmetric, polynomial of degree n — 1, with integer coefficients, in two
algebraic integers, ¢ and % as the “indeterminates”.

15. Why do we need P(x) to be a monic polynomial? And what is so special about it? Because

only for monic polynomials with a = 1 do the sums and products of roots equal simple
integer coefficients, rather than rational numbers. Hark back to the sum and product of the
roots. The generic quadratic ax? + bx + ¢ = 0 becomes monic when a = 1. And the sum
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16.

17.

18.

19.

20.

and product of its roots become

-b -b
a 1 (52)

c
pp=S=I=c

The sum and product of its roots are simply the signed coefficients of P(x), which are integers.

Why do we need a symmetric polynomial in f(¢, 1)? The fundamental theorem of symmetric
polynomials [15,16] states that every symmetric polynomial may be expressed as a linear
sum of elementary symmetric polynomials.

And, pray, what are these latter mathematical objects? For ¢ and 3 they are the sum and
product of these two: (¢ + ), and (¢¥). The expression 9" \which is a symmetric

polynomial in ¢ and 1, with integer coefficients—can be expressed as a polynomial in the
elementary symmetric polynomials (¢ + %) and (¢3) with integer coefficients.

Because (p+9) = 1 and (p3p) = —1, the symmetric polynomial representing the Binet formula,
when expressed in terms of elementary symmetric polynomials, evaluates to an integer.

There is an additional, clean way of demonstrating this using long division. The quotient in
Equation (51) may be shown to be exact, without remainder, and a symmetrical polynomial

itself:
(@" =M = (@ = P)@" P + 9" 2P + - + Q1P + Q0P e,

n-1
p" — 9" n—1-k,k
=) oYk,
=1 kZ:;)
Mere inspection will reveal this as a symmetric polynomial and there is no remainder. The
quotient is expressible as a linear sum of the elementary symmetric polynomials (¢ + ) = 1
and (p) = —1, and will therefore be an integer itself.

Whew! We have at long last demonstrated that the formula of Binet does give us integers for
all n.

Comment on polynomial long division

It is striking that polynomial long division has been featured twice in our mathematical journey.
Once, it was used in the context of formal power series to obtain a generating function. The second
time, it was used in the ring of symmetric polynomials to assert the integral value of the Binet
formula. In both cases, it has aided in prising open results that would otherwise have been more
tedious to obtain.

Centrality of the characteristic equation.

The polynomials P(x), Q(x) and the numbers ¢ and ¥ pop up along the way regardless of our
approach to obtaining a closed form solution to the Fibonacci recurrence relation. These objects
are, in a manner of speaking, embedded in the structure of Fibonacci sequence and they show up
whenever we start digging into it. They are central to it.
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Continuous function version

Is there a continuous function, whose values at integers give us the Fibonacci sequence? In such a
case, the Fibonacci sequence will be a discretely-sampled version of that function. This tempting
thought occurred to me as I was writing this blog.

When the Fibonacci numbers are shown as data points and plotted with piecewise linear interpol-
ation by Gnuplot, we get an impressive curve connecting the values of the Fibonacci sequence. It
is shown in Figure 2. The downside is that we do not have analytic function to describe this curve.

Fibonacci Numbers from Binet's Formula with
Piecewise Linear Interpolation between them

7000 T T T
F(n) —&—
6000
n F,
0 0
1 1
2 1
5000 [~ 3 2 —
4 3
5 5
6 8
7 13
- 8 21 _
4000 o w
— 10 55
> 11 89
) 12 144
13 233
3000 [~ 14 377 —
15 610
16 987
17 1597
18 2584
19 4181
2000 20 6765 ]
1000 -
0
0 5 10 15 20
n

Figure 2: Plot of the first twenty-one Fibonacci numbers as filled circles. The line connecting the points
is a piecewise linear interpolation provided by Gnuplot. Unfortunately, it does not have a closed form
expression. See the text for a discussion on why an exact continuous analog of the sequence is fraught
with complications.

But is there a better way? Yes, but it is not trivial.

In the section Recurrence relations and differential equations earlier in this blog, we explored
the analogy between recurrence relations and differential equations and their respective “eigen-
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functions”: A" and e**. However, we cannot assert that one is the continuous version of the other
simply because:
1.618 = @ # e¥ = 5.043 ; therefore ¢" # e¥" and

(53)
—0.618 ~ P # e¥ ~ 0.539 ; therefore y" # e¥".

The logical way forward is to define a continuous-valued function based on the Binet formula. But
such a function does not have a standard name or symbol. Nevertheless, it is sensible to christen
it the Binet-Fibonacci function F(x) for x € R and define it so:

F(x) = M

Vs

exlncp _ exlnzp
= ———— sothat

Vs
iy < &= ¥" (54)
(n) 7

etngy _ enlnl,b

Vs

=F,.

We get the Fibonacci sequence by substituting x = n as shown in Equation (54).

However, because 7 is negative and the logarithm of a negative number is complex,*® F(x) is a
complex-valued function. But when x = n, F(n) assumes only real values and we get the Fibonacci
sequence. When x is not an integer, we can and do get an imaginary part as well.

There is no complication with ¢* because it is a positive real number raised to a real power, whose
value will be real. The kid gloves must be put on only for 1* because 7 is a negative real number
that is ideally expressed using the polar form of a complex number before being exponentiated.

b =—[Y|
o
P¥ = [Ple™

The real part of F(x) symbolized by Fx(x) connects all the Fibonacci numbers in a perfectly
smooth curve as shown in Figure 3. Its equation is:

o[22

_ lqpx — [l* cos(nx>l
NG

15See my blog A Tetrad of Captivating Problems to find out why.

(56)
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Likewise, the imaginary part of F(x) is denoted by F5(x):

FS _ §0x— xl

(x) [—\/E
_ l—w sm(ﬂx)l

V5

It is now easy to verify that the imaginary part vanishes at integer values of n because sin(zrn) = 0
[¥|" sin(7rn)

(57)

for every integer n. Thus Fx(x) = = 0. Equivalently, for integer n, we have

Y™ = (—1)"|y|, which is real. So ¥" is real and hence F(n) is real.

This interesting derivation shows that although F(x) is a complex-valued function modelling the
Binet formula for continuous Xx, its values at x = n are not only real, but also integers. Does that
astound you? It still takes my breath away, every time I ponder it. We will now plot the real and
imaginary parts of this function F(x).

Key Takeaways

The Fibonacci Equation (1) is a second order, linear, constant coefficient, homogeneous recur-
rence relation. These attributes are similar to those of second order, linear, constant coefficient,
homogeneous differential equations. Both share the characteristic equation as a gateway to their
solution.

The numbers ¢, the golden ratio, and its negative reciprocal, 3, arising as the two solutions to
the polynomial x*> — x — 1 = 0 have distinctive properties that account for the behaviour of the
Fibonacci sequence. Like 7 and e they are irrational numbers. Unlike them, though, they are
algebraic integers and algebraic numbers. Their sum, ¢ + ¥ = 1. Their product 3 = —1.

Binet’s formula solves the Fibonacci recurrence and, in this blog, it is derived and proved using:

(a) mathematical induction;
(b) generating functions; and

(c) linear algebra.

The interlocking structural integrity of mathematics is thereby demonstrated because all three
approaches lead to the same formula of Binet.

Because the irrational number \/g occupies a central place in the formula, one might wonder how
it could lead to the integer-valued Fibonacci sequence. We have outlined reasons why this is so,
without going too much into the detailed abstract algebra that assures it.

The curve Fg(x), representing the real part of F(x)), is wondrous in that it is integer-valued at
the integers, i.e., for n € Ny, Fz(n) € N,. This means that F(n) is an integer to integer mapping,
which is exactly what an integer-valued sequence—like the Fibonacci sequence—really is.

Even more interesting is that at integers n, the imaginary part of F(x), becomes zero, i.e., F5(n) = 0.
Therefore, Fz(x) is the exact, continuous, real-valued function that connects the data points of the
Fibonacci sequence, even if F(x) is complex-valued when the variable is not an integer.
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Real part of F(x) = Fy(x) = (¢p* — ¢x)/\/ 5

7000 T T T
Fy(x)

6000

Fg(x) has integer values when x is an integer as shown by the filled circles

5000

4000

Fy(x)

3000

2000

1000

0 5 10 15 20

X

Figure 3: Graph of the real part, Fz (x), of the continuous function F(x) modelled on Binet’s formula.
The filled circles are the values of the Fibonacci sequence at integer values of x. See the box in Figure 2
for the values.
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Imaginary part of F(x) = Fg(x) = (¢* — ¢x)/\/ 5

0.3 T

Fy(x) |

Fg(x) is zero when x is an integer as shown by the filled circles

10 15 20

X

Figure 4: Graph of the imaginary part, F5(x), of the continuous function F(x) modelled on Binet’s

formula. The filled circles are the values at integers and are all zero, demonstrating that the Fibonacci
sequence is a real one.
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If these—and possibly other—properties cause astonishment in you, welcome to the club! The
mansion of Mathematics holds within itself countless such treasures.

Websites worth visiting

The Fibonacci numbers hold within themselves an endless fascination. I will likely blog about
them again in the future. Meanwhile, I have collated here some links to websites that expound on
the properties of the Fibonacci numbers.

1. Dr Ron Knott, a mathematician affiliated with the University of Surrey, has probably the most
exhaustive website dedicated to the Fibonacci numbers [17]. Definitely a site that should be
browsed.

2. Another interesting mathematical website that should be visited is Alexander Bogomolny’s
Cut the Knot website [18]. Not only does it show how the Binet formula may be derived from
generating functions, it contains a wealth of insights on many other mathematical topics.

3. The Fibonacci Quarterly [19] is a serious journal on matters Fibonacci that has been published
since 1963. This shows the evergreen interest on the Fibonacci numbers and their impact on
many aspects of Nature and life in general.

4. Phil Nowell’s blog [20] shows how to derive the n™ term of the Fibonacci sequence using
linear algebra, as we have done above in the section The Linear Algebra route.

5. For a discussion on the accuracy and efficiency of computing the Binet formula, see this blog
by Robin Houston [21].

6. A multiplicity of helpful viewpoints and answers is contained in this Mathematics Stack-
Exchange question [22]. It is an example of how interactions on the Web may be helpful,
enriching, and courteous.

7. The next two links were selected to show that fundamental questions could either attract
many answers [23] or just a few answers [24]. Regardless, the exchange of ideas will almost
always be enriching. Even if there is no explicit guarantee of correctness, it is unlikely that
grossly wrong answers will be permitted to prevail on Mathematics StackExchange.

8. Two other websites that discuss Binet’s formula, one with a mathematical flavour [25] and
the other with a computing flavour [26] are worth a visit as well.

By now you would have realized that any references to the Fibonacci numbers can only give a
limited and very partial glimpse into the subject. I am planning on writing further on the history
and other aspects of these fascinating numbers, and will include additional relevant references in
those blogs.

Epilogue

It was a good five months before I caught up with Sol after our encounter on the flight to Budapest.
I told him that my conceptualization and fulfilment of his request had taken considerable effort
and time.
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“Next time, I will be more circumspect in acquiescing to your requests,” I told Sol.
“Did you yourself learn anything in the process?” he asked quizzically.
“Yes, of course,” I replied truthfully.

“Understand then, that as long as you keep learning, you are keeping fit mentally and intellectually.
Have you ever taught anything to anyone without learning something yourself? Is this not true of
even the simplest of ideas, like those of addition or multiplication?” Sol queried me.

I could not but agree.

That was when whatever regrets I had—of time spent and effort expended—in writing this blog
on Binet’s formula, evaporated from my awareness. Explaining to another was definitely the
surest form of learning and consolidating my own knowledge.
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