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The germ of an idea

My friend Solus “Sol” Simkin and I were flying to attend a conference of a learned society in

Budapest, and to kill time, were engaged in a discussion on mathematics education.

Sol said, “Mathematics has morphed rapidly and almost completely, starting from the nineteenth

century, into a towering discipline built with tier-upon-tier of abstractions. And that has robbed

the subject of any link with the common man, who still equates mathematics with calculation.

“Even my mathematical friends do not profess familiarity with the discipline as a whole. They are

experts only in their narrow turf of specialization. The wholeness of the subject can seldom be

grasped—let alone appreciated—by mathematicians, to say nothing of the physicists, engineers,

and economists.”

As we rued wistfully the disappearance of generalists, I asked Sol what solution he would propose

to correct the situation.

“Start small,” he said. “Take a simple problem. Examine it afresh from several angles. Approach

the solution from seemingly different directions. Solve the problem. And show that all solutions co-

incide. Nothing will impress the young student of mathematics about the internal self-consistency

of the subject—built on logic granite—than this emergence of the same solution to the one problem,

tackled from different angles.

“Promise me that you would start writing along these lines so that young innocent minds are

reassured that the austere subject of mathematics also hides surpassing beauty. Expose the unity

of mathematics. Showcase its elegance. Highlight its awesome, almost mystical strength, wedded

to its alluring charm,” Sol made his request.

“What exactly do you suggest that I should do?” I quizzed him.

“If you are keen to pick up the gauntlet, let me spell it out for you”, Sol continued. “It is a shame

that when two canals are fed from the same river, the public is unaware that the water source is

the same.

There are many mathematical canals which are studied separately where students do not have

the slightest inkling that their origin is the same. Mathematics will become much easier if the

discrete and the continuous are studied together. But no! It is either discrete mathematics or

calculus and analysis. This disparate presentation of material makes the subtle unity underlying

mathematics difficult to grasp.”
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“Have a heart Sol for the poor critters doing the studying. Students of Computer Science study

Discrete Mathematics whereas students of Physics need continuum Mechanics and Analysis. We

cannot stifle everyone with material that adds to the academic load without a commensurate

return on their future professional needs.”

“You make an assumption that is not well-founded,” Sol countered. Not everything needs to be

plumbed to its uttermost depths. But the fact that two canals arise from the same mathematical

rivermust be made clear. To lose that conceptual connectivity is to impoverish education at the

expense of practical utility,” Sol concluded.

Harnessed to the goal

It was only on my return flight, after much pedagogical tossing and turning, that I hit upon a neat

little patch of mathematics that was both united and divided at the same time. To paraphrase Sol’s

expression, a single mathematical river that fed two different canals, with few if any knowing of

their common origin.

What I needed was to nail a core idea or anchor concept that would ensure that I did not stray

too far afield and yet, which assured that the necessary appreciation of unity did not escape the

reader. I could embellish as I felt inspired, but I should stay true to my course.

“I will choose a decent problem and solve it in a variety of ways to exhibit the richness of mathem-

atics,” I told Sol. “I will start modestly, and perhaps a little under-ambitiously. Your idea is one that

merits being worked upon time and time again to illustrate the self-consistency of mathematics.

This might very well make for a series of blogs all threaded on the theme of ‘many approaches

but one solution.’ I already have one example in mind. Let me work on it first,” I had replied.

“I will drive a peg in the mathematical ground using a single core idea.” I committed to Sol. “And

I will show its surprising linkages to different areas of Mathematics. How it will affect young

students, we will leave time to decide.”

And that is how this blog, on the derivation and proof of the Binet formula1 for the Fibonacci

sequence2 by different methods first came to be.

We begin with some necessary preliminaries.

Sequences and Recurrence Relations

We define ℕ = {1, 2, 3,…} as the set of natural numbers or positive integers. Throughout this blog,

the sequence index 𝑛 will belong to the set of non-negative integers:

ℕ0 = ℕ ∪ {0}

A real-valued sequence 𝑎 is defined as a mapping from ℕ0 to the real numbers, ℝ:

𝑎 ∶ ℕ0 → ℝ
1Binet is pronounced as bee-nay.
2Fibonacci is pronounced as fi-buh-naa-chee.
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To make explicit the dependence of 𝑎 on 𝑛 ∈ ℕ0, we may denote the sequence as (𝑎𝑛). This
notation, explicitly involving 𝑛, emphasizes that the sequence is an ordered list of numbers.

The defining characteristic of a sequence is its recurrence relation, explained below. You might

recall two sequences from your middle or high school days [1]:

1. An arithmetic progression, is a sequence with an initial term, 𝑎0, and a common difference 𝑑.
The 𝑛th term of the sequence may be recursively defined as

𝑎𝑛 = 𝑎𝑛−1 + 𝑑.

This is also called a recurrence relation. Any term in the sequence, except for the initial

term(s), may be defined by the term or terms preceding it. Not surprisingly, a recurrence

relation may also be called a difference equation.

2. A geometric progression, is a sequence with an initial term 𝑎0, and a common ratio 𝑟. It too
may be recursively defined by the recurrence relation

𝑎𝑛 = 𝑎𝑛−1𝑟.

Classification of recurrence relations

The two sequences shown above are particularly simple but also very useful. In general, a linear,

constant coefficient sequence of order 𝑟 has a recurrence relation defined as

𝑎𝑛 = 𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2 + 𝑐3𝑎𝑛−3 +⋯+ 𝑐𝑟𝑎𝑛−𝑟 + 𝑔(𝑛)

If 𝑔(𝑛) = 0, the recurrence relation is called homogeneous; otherwise it is non-homogeneous.

It should now be apparent that the arithmetic and geometric progressions are both first order,

linear, constant coefficient recurrence relations. The geometric progression is homogeneous. The

arithmetic progression 𝑎𝑛 = 𝑎𝑛−1 + 𝑑 is non-homogeneous as long as the common difference

𝑑 ≠ 0. If 𝑑 = 0, it too is homogeneous, but such a sequence will be boring, as all the terms will be

the same!

Recurrence relations and differential equations

The terminology used to classify recurrence relations is reminiscent of that used to classify differ-

ential equations. In this blog, wewill restrict the scope of both recurrence relations and differential

equations to homogeneous, linear, constant coefficient equations, which are shift-invariant. Their

underlying unity makes studying them together both insightful and productive.

What are the similarities and differences between these two mathematical objects?

A difference equation or recurrence relation embodies shifts 𝑆 in the value of the index 𝑛 in the

equation connecting terms of a sequence.

In a differential equation the derivative or differential operator, 𝐷, takes the place of the index
shift when equations of functions are strung together.
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Since differential equations are generally more familiar, let us first consider the equation 𝑦(𝑥) =
𝑒𝜆𝑥. Its derivative is then

d𝑦
d𝑥

= 𝐷𝑦 = 𝜆𝑒𝜆𝑥 = 𝜆𝑦(𝑥). The exponential 𝑒𝜆𝑥 is said to be an

eigenfunction of the differential operator 𝐷.3

Next, consider a sequence defined as 𝑎𝑛 = 𝜆𝑛. Its next term is denoted as 𝑆(𝑎𝑛) = 𝑎𝑛+1 = 𝜆𝑛+1 =
𝜆(𝜆𝑛) = 𝜆𝑎𝑛. By analogy with differential equations, we may conclude that 𝜆𝑛 is an eigenfunction

of the shift operator 𝑆 associated with the sequence 𝑎𝑛.

We may infer that recurrence relations and differential equations are the discrete and continuous

analogs of each other, with their characteristics and behaviour mirroring this fact.

The Fibonacci sequence

Let us take the Fibonacci sequence, 𝐹 ∶ ℕ0 → ℕ0, as a concrete example.4

It is a sequence in which the current term is the sum of the two preceding terms. Historically,

there has been diversity in the choice of the first two numbers of the Fibonacci sequence that are

needed to fire up the rest. Some started with 𝐹0 = 0 and 𝐹1 = 1, others with 𝐹0 = 1 and 𝐹1 = 1,
whereas Fibonacci himself started with 𝐹1 = 1 and 𝐹2 = 2. The modern mathematical convention

we follow here is to start with 𝐹0 = 0 and 𝐹1 = 1:

𝐹0 = 0
𝐹1 = 1

𝐹𝑛+2 = 𝐹𝑛+1 + 𝐹𝑛 with 𝑛 ∈ ℕ0.

(1)

This is a second order recurrence relation.

Using naive recursion on the recurrence relation to find the 𝑛th Fibonacci number is expensive in

terms of time and computing resources. A formula for the 𝑛th Fibonacci number is therefore an

attractive goal to work toward, and the French mathematician, Jacques Philippe Marie Binet, is

credited with its discovery, although it was known to other mathematicians like Leonhard Euler,

Daniel Bernoulli, and Abraham de Moivre more than a century earlier [2]. Such is the irony of

history.

The shift operator 𝑆 is defined as 𝑆(𝐹𝑛 ​) = 𝐹𝑛+1. Then, Equation (1) translates to the operator

equation:

(𝑆2 − 𝑆 − 𝐼) 𝐹 = 0 (2)

where 𝐼 is the identity operator (which leaves whatever it acts upon intact).

Now, we capitalize on the analogy between functions and sequences, between derivatives and

shifts: the differential equation for 𝑦(𝑥) should mirror the recurrence relation for the Fibonacci

sequence.

3Kindly review the blogs Differential Equations and Eigenvalues and Eigenvectors—Why are they important? if
you need to these review concepts.

4In my earlier blog Euler Two with Julia, I have discussed programs written in the Julia programming language
that computed sums of the even-valued Fibonacci numbers whose values do not exceed four million. The interested
reader is directed to that blog.
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Replacing shifts with derivatives in Equation (1), we have the following:

d2𝑦
d𝑥2 =

d𝑦
d𝑥 + 𝑦 i.e.,

d2𝑦
d𝑥2 −

d𝑦
d𝑥 − 𝑦 = 0 .

(3)

This substitution is formal: it preserves algebraic structure but not dimensional or analytic

meaning.

Using the differential operator𝐷 in place of the verbose
d

d𝑥
notation, Equation (3) may be rewritten

as:

(𝐷2 − 𝐷 − 1) 𝑦 = 0. (4)

The recurrence relation, Equation (1), and the differential equation, Equation (3), are the discrete

and continuous analogs of each other. We will revisit this idea a little later in this blog.

The Characteristic Equation

Save for a difference in symbols, Equation (2) and Equation (4) are identical in form. The common

polynomial on the left may now be written as 𝑃(𝑥):

𝑃(𝑥) = 𝑥2 − 𝑥 − 1 = 0 (5)

where 𝑥 is a dummy variable with no particular significance.

Equation (5) is called the characteristic equation and it applies to both difference equations and

differential equations.5 Its roots hold the key to solving both types of equations.

The roots of the characteristic equation, denoted here by 𝜆, are the solutions to the difference equation
as well as the differential equation in their respective contexts.

Why is this so? As explained above in Recurrence relations and differential equations, the eigen-

functions of the differential operator are the exponentials, 𝑒𝜆𝑥.6 In like fashion, the eigenfunctions

of the recurrence relation, or shift operator, are 𝜆𝑛.

In other words, for the case of the quadratic characteristic equation with distinct roots, 𝜆1 and 𝜆2,

𝐹𝑛 = 𝐴𝜆𝑛1 + 𝐵𝜆𝑛2 and (6)

and

𝑦(𝑥) = 𝐴𝑒𝜆1𝑥 + 𝐵𝑒𝜆2𝑥 (7)

where 𝐴 and 𝐵 are constants whose values satisfy the initial conditions. It is important to bear in

mind that this applies when the roots of the characteristic equation are distinct.7

The eigenfunction is the justification. Substitution yields the verification.

5The qualifications are: homogeneous, linear, second order, constant coefficient, shift-invariant equations.
6This has also been explained in my previous blog Eigenvalues and Eigenvectors—Why are they important?
7See my blog Differential Equations.
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Brief summary

Certain sequences lead to recurrence relations, which in turn lead to characteristic equations,

whose roots, raised to integer powers, lead to closed form expressions for the general term in the

sequence [3].

For certain types of differential equations, the solutions are furnished by exponentials raised to

powers that are the roots of the characteristic equation.

Deriving Binet’s formula

We use Binet’s formula to independently calculate the 𝑛th term of the Fibonacci sequence for

a particular 𝑛, without being tethered to recurrence relations. We would then have solved the

puzzle of “what equation describes the terms of the Fibonacci sequence?”.

Equation (5) is the characteristic equation for the Fibonacci equation. When this quadratic is

solved, we get these two roots, say 𝜑 and 𝜓, so:

𝜑 = 1
2 [1 +

√5] and 𝜓 = 1
2 [1 −

√5] (8)

From Equation (6), the solution for the recurrence relation is:

𝐹𝑛 = 𝐴𝜑𝑛 + 𝐵𝜓𝑛 (9)

We now use the two initial conditions, 𝐹0 = 0 and 𝐹1 = 1 to determine 𝐴 and 𝐵. This leads to:

𝐹0 = 0
= 𝐴𝜑0 + 𝐵𝜓0

0 = 𝐴 + 𝐵
𝐵 = −𝐴 and

𝐹1 = 1
= 𝐴𝜑 + 𝐵𝜓 ; and substituting for 𝐵
= 𝐴 [𝜑 − 𝜓]

= 𝐴
2 [(1 +

√5) − (1 − √5)]

1 = 𝐴√5

𝐴 = 1
√5

𝐵 = − 1
√5

.
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The general term is therefore:

𝐹𝑛 =
1
√5

[
1 + √5

2 ]
𝑛

− 1
√5

[
1 − √5

2 ]
𝑛

= 1
√5

([
1 + √5

2 ]
𝑛

− [
1 − √5

2 ]
𝑛

)

= 1
√5

(𝜑𝑛 − 𝜓𝑛)

(10)

and this is the formula bequeathed to us by Binet [4]. It not only looks daunting, it also seems

incredible. How can we get a whole number as the output from an expression involving irrational

numbers like√5, unless they cancel out in some way? This suspicion must inspire us to dig a little

deeper to unearth the magic.

Relationship with the number φ

The symbol 𝜑, used above, is reserved for a special constant that occurs widely in Nature. It is the

value of an aesthetically favoured ratio, known from ancient times as the divine proportion [5] or

the golden ratio.

Let a line have a length of 𝑥 + 1 units. That particular choice of the length 𝑥 such that

𝑥
1 = 𝑥 + 1

𝑥 gives rise to

𝑥2 = 𝑥 + 1 or equivalently

𝑥2 − 𝑥 − 1 = 0.

(11)

This is the same quadratic as the characteristic equation for the Fibonacci sequence.

The solution of this quadratic leads to two roots, which from the quadratic formula, are

−𝑏 ± √𝑏2 − 4𝑎𝑐
2𝑎 . Substituting 𝑎 = 1, 𝑏 = −1 and 𝑐 = −1, we get the two roots to be

𝜑 =
−(−1) + √(−1)2 − 4(−1)

2
= 1
2 [1 +

√5]

≈ 1.6180339887

(12)

and

𝜓 =
−(−1) − √(−1)2 − 4(−1)

2
= 1
2 [1 −

√5]

≈ −0.6180339887.

(13)

We also know that the sum of quadratic roots is −𝑏
𝑎
and the product of the quadratic roots is

𝑐
𝑎
.

Therefore, we may assert that

𝜑 + 𝜓 = 1 ⟹ 𝜓 = 1 − 𝜑. (14)
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Moreover,

𝜑𝜓 = −1 ⟹ 𝜓 = −1𝜑. (15)

Both these statements may be verified from Equations (12) and (13).

The characteristic equation 𝑥2 − 𝑥 − 1 = 0may also be written as 𝑥2 = 𝑥 + 1, as is clear from
Equation (11). This means:

𝜑2 = 𝜑 + 1
𝜓2 = 𝜓 + 1.

(16)

This equivalence will come in handy later. It allows us to linearize expressions involving the roots

of the characteristic equation in which a square term appears, and can lead to tractable solutions

where there might otherwise be none.

We may now re-write Binet’s formula using these relations thus:

𝐹𝑛 =
𝜑𝑛 − 𝜓𝑛

√5
(17)

𝐹𝑛 =
𝜑𝑛 − (1 − 𝜑)𝑛

√5
(18)

𝐹𝑛 =
𝜑𝑛 − ( 1

−𝜑
)
𝑛

√5
(19)

We are now ready to tackle proving Binet’s formula by three different methods. The first method is

called the Principle of Mathematical Induction, which is what we look at next.

Principle of Mathematical Induction

Proof by induction [6] is a time-honoured method of algorithmic proof, but it has one drawback:

we need the formula we are setting out to prove.

But how do we get that formula in the first place? Obviously by some other method or guesswork.

We have just used the characteristic equation to derive Binet’s formula; so this is of little moment

to us in this blog. But it is noteworthy that this lack is the Achilles heel of proof by induction,

which works well once we have a formula in hand.

Assuming that we do have a formula, proof by induction is logically clear and procedurally simple.

Let us go through mathematical induction step-by-step:

1. We need the formula8 ormathematical statementwe are trying to prove. It must be a function

of 𝑛 ∈ ℕ0. Let us call this formula 𝑃(𝑛).

2. We must first verify that 𝑃(𝑛) is true for 𝑛 = 1 or some such starting value. This is called the

base case.

3. We then assume that 𝑃(𝑛) is true for some 𝑘 ∈ ℕ0. Why do we use 𝑘 instead of 𝑛 here?

Because we do not want to confound a variable we use in our proof—𝑘 in this case—with the

8See my blog Expressions, Equations, and Formulae.
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variable 𝑛 in the problem statement. So, while 𝑘 is just as arbitrary as 𝑛, we go out of our way

to use it to differentiate it from 𝑛. The symbol 𝑘 is a placeholder in the proof that disappears

once the proof is complete. Think of it like a dummy variable in definite integration, for

example. The assumption we make in this step—that 𝑃(𝑘) is true—is called the induction

hypothesis.

4. The next step is the meat of the method, called the induction step. In the language of math-

ematical logic, we need to prove that if 𝑃(𝑘) is true, then 𝑃(𝑘 + 1) is also true, i.e.,

𝑃(𝑘) ⟹ 𝑃(𝑘 + 1) (20)

where the symbol ⟹ stands for implies. Direct evaluation of 𝑃(𝑘 + 1) will usually suffice

as proof in this step.

Let us recapitulate. We have verified that 𝑃(1) is true in the first step. We have proved that if 𝑃(𝑘)
is true, then 𝑃(𝑘 + 1) is also true in the third step. Substituting 𝑘 = 1, this means that if 𝑃(1) is
true, which we have verified, then 𝑃(2) is also true. Substituting 𝑘 = 2, since we know that 𝑃(2) is
true, it follows that 𝑃(3) is also true. And so on for all natural numbers, without end. There is an

unbroken chain of logic and numbers that links the truth of the first statement or base case with

the truth of all subsequent cases. This is the essence of proof by induction.

Proving Binet’s formula by induction

Let us now prove Binet’s formula by the principle of mathematical induction. To unclutter the

working, we will use the version of the formula shown in Equation (17).

1. Since the Fibonacci recurrence involves three consecutive terms, we need two base cases to

get the induction fired up. This is called strong induction. These base cases are:

(a) Substituting 𝑘 = 0 in Equation (17), we have

𝐹0 =
1
√5

[𝜑0 − 𝜓0]

= 1
√5

(1 − 1)

= 0 as required.
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(b) Substituting 𝑘 = 1 in Equation (17), we have

𝐹1 =
1
√5

[𝜑 − 𝜓]

= 1
√5

[
1 + √5

2 − 1 − √5
2 ]

= 1
√5

[
1 + √5 − 1 + √5

2 ]

= 1
√5

[
2√5
2 ]

= 1 as required.

2. Assuming that Binet’s formula holds for 𝐹𝑘 and 𝐹𝑘−1, we now show that it holds for 𝐹𝑘+1 by
verifying that the recurrence yields the expected form:

𝐹𝑘+1 = 𝐹𝑘 + 𝐹𝑘−1

= 1
√5

[𝜑𝑘 − 𝜓𝑘] + 1
√5

[𝜑𝑘−1 − 𝜓𝑘−1]

= 1
√5

[𝜑𝑘 + 𝜑𝑘−1 − 𝜓𝑘 − 𝜓𝑘−1]

= 1
√5

[𝜑𝑘−1(𝜑 + 1) − 𝜓𝑘−1(𝜓 + 1)]

= 1
√5

[(𝜑𝑘−1)(𝜑2) − (𝜓𝑘−1)(𝜓2)]

= 1
√5

[𝜑𝑘+1 − 𝜓𝑘+1] as required.

(21)

The magic in the second last line of Equation (21) is because of Equation (16).

3. This completes the proof by mathematical induction. We have verified two base cases, 𝑘 = 0
and 𝑘 = 1, by direct evaluation of the Binet formula. The induction step involves 𝑘 = 2.
Since it holds for 𝑘 = 2, it will hold for 𝑘 = 3, and so on.

Just for curiosity, we could directly substitute 𝑘 = 2 in the Binet formula to verify that it really

holds, since we know from the sequence that 𝐹2 = 1:

𝐹2 =
1
√5

[𝜑2 − 𝜓2]

= 1
4√5

[(1 + √5)2 − (1 − √5)2]

= 1
4√5

4√5
1

= 1 as required.
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The Generating Function

A generating function is a clothesline on which we hang up a sequence of numbers for display.

–Herbert S Wilf

generatingfunctionology [7]

The generating function [3,7] of a sequence provides a second method for deriving a formula for

the 𝑛th term of the Fibonacci sequence. The characteristic equation will again pop up along the

way, once again establishing its centrality to the process.9

We know from Equation (1) how the Fibonacci sequence may be written. Suppose we want to

define a power series 𝐹(𝑥) as a polynomial whose coefficients are the Fibonacci sequence—which

is the generating function—we may write:

𝐹(𝑥) =
∞
∑
𝑛=0

𝐹𝑛𝑥𝑛. (22)

Because 𝐹0 = 0, we may also write Equation (22)—with 𝑛 starting at 1 rather than 0—as

𝐹(𝑥) =
∞
∑
𝑛=1

𝐹𝑛𝑥𝑛. (23)

Moreover, since 𝐹1 = 1, we may also write Equation (23) as

𝐹(𝑥) = 𝑥𝐹1 +
∞
∑
𝑛=2

𝐹𝑛𝑥𝑛

= 𝑥(1) +
∞
∑
𝑛=2

𝐹𝑛𝑥𝑛

= 𝑥 +
∞
∑
𝑛=2

𝐹𝑛𝑥𝑛.

(24)

Using the Fibonacci recurrence, and keeping Equations (22) and (23) in mind, we may write

9In the process of researching for this blog, I came across a post by Austin Rochford [8] that is well written and
that mirrors almost exactly the approach I had in mind.
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Equation (24) as

𝐹(𝑥) = 𝑥 +
∞
∑
𝑛=2

(𝐹𝑛−1 + 𝐹𝑛−2)𝑥𝑛

= 𝑥 +
∞
∑
𝑛=2

𝐹𝑛−1𝑥𝑛 +
∞
∑
𝑛=2

𝐹𝑛−2𝑥𝑛

= 𝑥 + 𝑥
∞
∑
𝑛=2

𝐹𝑛−1𝑥𝑛−1 + 𝑥2
∞
∑
𝑛=2

𝐹𝑛−2𝑥𝑛−2

= 𝑥 + 𝑥
∞
∑
𝑛=1

𝐹𝑛𝑥𝑛 + 𝑥2
∞
∑
𝑛=0

𝐹𝑛𝑥𝑛

= 𝑥 + 𝑥[𝐹(𝑥)] + 𝑥2[𝐹(𝑥)]
𝐹(𝑥) − 𝑥[𝐹(𝑥)] − 𝑥2[𝐹(𝑥)] = 𝑥

𝐹(𝑥)[1 − 𝑥 − 𝑥2] = 𝑥

𝐹(𝑥) = 𝑥
1 − 𝑥 − 𝑥2 .

(25)

Equation (25) is the equation of the generating function 𝐹(𝑥). Let us assign its denominator to be

𝑄(𝑥):
𝑄(𝑥) = 1 − 𝑥 − 𝑥2. (26)

Observe that 𝑄(𝑥) in Equation (26) resembles the polynomial 𝑃(𝑥) of the characteristic equation:
Equation (5). Indeed, if the solutions of 𝑃(𝑥) = 0 are 𝜑 and 𝜓, the solutions of 𝑄(𝑥) = 0 are −𝜑
and −𝜓. This is shown in the graphs of these two quadratics below:

From Figure 1, we know that the roots of 𝑄(𝑥) are −𝜑 and −𝜓, i.e.,

𝑄(𝑥) = 𝑘(𝑥 − (−𝜑))(𝑥 − (−𝜓))
= 𝑘(𝑥 + 𝜑)(𝑥 + 𝜓)

The constant 𝑘 is necessary to ensure that we get the correct parabola out of countless ones with

the same two roots. At the point (0, 0),10 we have from the graph 𝑄(0) = 1 = 𝑘𝜑𝜓 = 𝑘(−1)
because 𝜑𝜓 = −1 from Equation (15). Therefore, 𝑘 = −1 and

𝑄(𝑥) = −(𝑥 + 𝜑)(𝑥 + 𝜓). (27)

So, the partial fraction expansion of 𝐹(𝑥)may be written as

𝐹(𝑥) = 𝑥
1 − 𝑥 − 𝑥2

= 𝑥
𝑄(𝑥)

= 𝑥
−(𝑥 + 𝜑)(𝑥 + 𝜓)

= 𝐴
(𝑥 + 𝜑)

+ 𝐵
(𝑥 + 𝜓)

(28)

10The same result could have been obtained by use of the quadratic formula.
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Figure 1: A comparison of the plots of the curves 𝑃(𝑥) and 𝑄(𝑥). The 𝑥-axis intersections of these
curves have opposite signs and are switched laterally. 𝑃(𝑥) is the characteristic polynomial of the
Fibonacci sequence. 𝑄(𝑥) is the denominator of the rational polynomial defining the generating
function.
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It follows that

−𝑥 = 𝐴(𝑥 + 𝜓) + 𝐵(𝑥 + 𝜑) (29)

By substituting well-chosen values for 𝑥 on both sides of Equation (29), wemay reduce the solution

of two simultaneous equations into the independent solution of two simple equations. We need

values of 𝑥 that set either (𝑥 + 𝜓) or (𝑥 + 𝜑) to zero.

If we set 𝑥 = −𝜓, we get

−(−𝜓) = 𝐵(𝜑 − 𝜓)

𝐵 =
𝜓

𝜑 − 𝜓

=
𝜓
√5

.

(30)

Likewise, if we set 𝑥 = −𝜑, we get

−(−𝜑) = 𝐴(𝜓 − 𝜑)

𝐴 =
𝜑

𝜓 − 𝜑

= −
𝜑
√5

.

(31)

Substituting into Equation (28), we get Equation (32)

𝐹(𝑥) = 1
√5

[
𝜓

𝑥 + 𝜓 −
𝜑

𝑥 + 𝜑] (32)

which when properly expanded will give us our generating polynomial for the Fibonacci sequence.

But that is not our goal. Binet’s formula is.

Algebra versus Analysis

We now need to digress a little so that we may progress toward our goal. It requires a change in

our mathematical perspective. In the context of the sum to infinity of a geometric progression

or a power series like a Taylor series, we are concerned about something called the radius of

convergence [1]. The equation we are looking at is:

1
1 − 𝑥 =

∞
∑
𝑘=0

𝑥𝑘 = 1 + 𝑥 + 𝑥2 + 𝑥3 + 𝑥4 +… . (33)

where convergence occurs when |𝑥| < 1. This statement is valid from the viewpoint of power

series and analysis.

In our case, though, justification using this logic is a little slippery because convergence cannot be

asserted.

So, we need an approach where the equality is claimed based on algebraic manipulation within

the ring of formal power series, [[ℝ]] where convergence is irrelevant but where unique inverses

for series with nonzero constant term are guaranteed.

Without getting too deep into formal power series, we can look at Equation (33) as an algebraic
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equivalence. This means that the RHS of Equation (33) is simply another way of writing
1

1 − 𝑥 .
The 𝑥 is called an indeterminate, rather than a variable that can take on numerical values. It is

simply a symbol or placeholder in an algebraic expression.

The applicable constraint is that a formal power series 𝑓(𝑥)

𝑓(𝑥) =
∞
∑
𝑛=0

𝑎𝑛𝑥𝑛

has a unique reciprocal if and only if 𝑎0 ≠ 0 [7]. This constraint is met by Equation (33) where the

coefficient of 𝑥0 is 1.

If we multiply both sides of Equation (33) by
1

1 − 𝑥 , we get

1 = (1 − 𝑥)
∞
∑
𝑘=0

𝑥𝑘. (34)

From Equation (34) we infer that the infinite series

∞
∑
𝑘=0

𝑥𝑘 is themultiplicative inverse or reciprocal

of (1 − 𝑥). Plain long division on the LHS of Equation (33) would also lead to its RHS.

You might think that this is quibbling over trivial matters. But it is not. Operations are either

meaningful and allowed, or nonsensical and disallowed, depending on strictly defined contexts.

The same symbols may be used for variables and placeholders: the former can taken on numerical

values; the latter are symbols that could as well have been replaced by pictographs.11

Towards Binet’s formula

With that out of the way, we can work on the RHS of Equation (32). Using Equation (15)

𝜓
𝑥 + 𝜓 = 1

1 + 𝑥
𝜓

; substituting 𝜓 = −1𝜑

= 1
1 − 𝑥𝜑

=
∞
∑
𝑘=0

(𝑥𝜑)𝑛)

=
∞
∑
𝑘=0

𝜑𝑛𝑥𝑛.

(35)

11I have digressed thus far because I found themathematical justification for Equation (33) on the basis of geometric
series questionable where convergence cannot be asserted. It was only upon digging deeper did I stumble upon a
different way of looking at the same expression. And the second viewpoint is the child of abstract algebra, which
would not have found its way into most high school mathematical syllabuses.
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Similarly,
𝜑

𝑥 + 𝜑 = 1
1 + 𝑥

𝜑

; substituting 𝜑 = −1𝜓

= 1
1 − 𝑥𝜓

=
∞
∑
𝑘=0

(𝑥𝜓)𝑛

=
∞
∑
𝑘=0

𝜓𝑛𝑥𝑛.

(36)

Substituting into Equation (32) we get

𝐹(𝑥) = 1
√5

[
𝜓

𝑥 + 𝜓 −
𝜑

𝑥 + 𝜑]

= 1
√5

[
∞
∑
𝑘=0

𝜑𝑛𝑥𝑛 −
∞
∑
𝑘=0

𝜓𝑛𝑥𝑛]

= 1
√5

∞
∑
𝑘=0

[𝜑𝑛𝑥𝑛 − 𝜓𝑛𝑥𝑛]

=
∞
∑
𝑘=0

1
√5

[𝜑𝑛 − 𝜓𝑛] 𝑥𝑛

But 𝐹(𝑥) was defined in Equation (22) to be

𝐹(𝑥) =
∞
∑
𝑛=0

𝐹𝑛𝑥𝑛

=
∞
∑
𝑘=0

1
√5

[𝜑𝑛 − 𝜓𝑛] 𝑥𝑛

which, after equating coefficients of 𝑥 gives us

𝐹𝑛 =
𝜑𝑛 − 𝜓𝑛

√5

which is Binet’s formula as expressed in Equation (10), and we are finally done.

The Linear Algebra route

In the Fibonacci sequence, each term is defined as a linear combination of the two preceding

terms. This alone should alert us to the possibility that the sequence may be constructed using

linear algebra and matrices. And we would not be wrong.

Indeed, Strang [9, pp 340–341], derives the Binet formula from first principles using only the

Fibonacci recurrence relation, Equation (1).

I will largely mirror Strang’s development to demonstrate the third way in which Binet’s formula

may be derived. Whether or not “all roads literally lead to Rome today”, all derivations lead to the

same formula of Binet.
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Vectorizing the recurrence formula

The equation 𝐹𝑛+2 = 𝐹𝑛+1 + 𝐹𝑛 is a scalar expression which has two input terms on its RHS, and

one output term on its LHS. How may we recast this expression using vectors and matrices?

We may write

𝐹𝑛+2 = [1 1] [
𝐹𝑛+1
𝐹𝑛

]

but apart from complicating the notation, it yields us little by way of economy, efficiency, or insight.

It appears contrived simply to accommodate vector-matrix notation. We need to dig deeper.

We could start by defining a two-dimensional vector for the two input terms so:

u𝑛 = [
𝐹𝑛+1
𝐹𝑛

] (37)

in which case, the vector for the output should be:

u𝑛+1 = [
𝐹𝑛+2
𝐹𝑛+1

] (38)

Note that because 𝐹𝑛+1 is part of the input, its value is already known. The only missing ingredient

is the matrix 𝐴 to give us the vector-matrix equation

u𝑛+1 = 𝐴u𝑛 (39)

Let us formally solve for 𝐴 by setting it to be

𝐴 = [
𝑎 𝑏
𝑐 𝑑

] (40)

We then have 𝐹𝑛+2 = 𝑎𝐹𝑛+1 + 𝑏𝐹𝑛 = 𝐹𝑛+1 + 𝐹𝑛 giving 𝑎 = 1 and 𝑏 = 1. But what about the second

term? Note that the second component of the output is by definition 𝐹𝑛+1. So, the second equation

is 𝐹𝑛+1 = 𝑐𝐹𝑛+1 + 𝑑𝐹𝑛 giving us 𝑐 = 1 and 𝑑 = 0. The matrix 𝐴 is therefore

𝐴 = [
1 1
1 0

] (41)

and we have now vectorized the Fibonacci recurrence relation.

Let us recapitulate for a moment. The input is naturally a two-dimensional vector, u𝑛. To ac-

commodate the vector framework, we have deliberately cast the output as a two-dimensional

vector as well: u𝑛+1, whose first component is 𝐹𝑛+2 and second component is 𝐹𝑛+1. This notation
is consistent with the definition for the vector u𝑛+1.

But what is 𝐹𝑛+1 on the LHS? Have we introduced something extraneous? Why, it is an input

on the RHS in Equation (37), and therefore comes already defined. We have not introduced any

extraneous relationships into the original recurrence equation.

By introducing 𝐹𝑛+1 not only as a given input variable, but also as part of the output, we have
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vectorized the Fibonacci recurrence. This leap of the imagination—where both input and output

are twodimensional vectors—is key to reformulating the Fibonacci recurrence as amatrix equation.

This point might be glibly glossed over, but the change in perspective it entails is vital to vectorizing

the equation as shown in Equation (39).

The initial conditions are

u0 = [
1
0
] ; u1 = [

1
1
] . (42)

Obtaining the eigenvalues

Each term of the Fibonacci recurrence is the result of pre-multiplying the previous term by 𝐴.
Therefore, the 𝑛th term is given by

u𝑛 = 𝐴𝑛u0. (43)

To enable efficient evaluation of 𝐴𝑛, we need to diagonalize 𝐴. For that we need the eigenvalues

of 𝐴, which are the roots of the characteristic polynomial of 𝐴, given by

det(𝐴 − 𝜆𝐼) = 0.

The algorithm is as follows:

1. The 2 × 2 identity matrix is given by

𝐼 = [
1 0
0 1

]

2. The matrix (𝐴 − 𝜆𝐼) is

𝐴 − 𝜆𝐼 = [
1 − 𝜆 1
1 −𝜆

] .

3. The characteristic polynomial is given by

det(𝐴 − 𝜆𝐼)
= (1 − 𝜆)(−𝜆) − 1
= 𝜆2 − 𝜆 − 1
= 0.

But this polynomial is just 𝑃(𝜆) in Equation (5). From Equation (8), we know the roots of this

polynomial to be 𝜑 and 𝜓.

It is interesting to note that in both instances, this polynomial is called the characteristic polynomial,

although it has arisen in different mathematical contexts. Even more interesting, it is the same

polynomial.
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Determining the eigenvectors

We know that the eigenvalues of 𝐴 are 𝜑 and 𝜓 as defined in Equation (8). Let

e𝜑 = [
𝑎
𝑏
]

be the eigenvector corresponding to the eigenvalue 𝜑. Then, because

(𝐴 − 𝜑𝐼)e𝜑 = 0,

we have:

[
1 − 𝜑 1
1 −𝜑

] [
𝑎
𝑏
] = [

0
0
] .

The two equations arising from this are:

(1 − 𝜑)𝑎 + 𝑏 = 0
𝑎 − 𝜑𝑏 = 0.

The second equation shows that 𝑎 and 𝑏 are linearly dependent, i.e., we may freely choose the

value of 𝑏 for our convenience, and that will determine the value of 𝑎. In this case, we choose

𝑏 = 1 and that gives us 𝑎 = 𝜑. Therefore, one eigenvector is

u𝜑 = [
𝜑
1
] . (44)

Likewise, the other eigenvector is

u𝜓 = [
𝜓
1
] . (45)

Diagonalizing the matrix A

In my blog Eigenvalues and Eigenvectors—Why are they important? I have explained how to

diagonalize a squarematrix with distinct eigenvalues, as in the present case. I will use the notation

from that blog, except that the matrix𝑀 there is now our matrix 𝐴 here.

The algorithm is:

1. The matrix 𝑃 has columns that are the eigenvectors, i.e.,

𝑃 = [
𝜑 𝜓
1 1

] .

2. The inverse of 𝑃, denoted by 𝑃−1, is [10]

𝑃−1 = 1
𝜑 − 𝜓 [

1 −𝜓
−1 𝜑

] .

3. The diagonal matrix 𝐷 is the one whose diagonal entries are the eigenvalues. In our case,
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this is

𝐷 = [
𝜑 0
0 𝜓

] .

4. We assert that12

𝐴 = 𝑃𝐷𝑃−1

𝐴𝑛 = 𝑃𝐷𝑛𝑃−1

5. Recall from Equation (43) that

u𝑛 = 𝐴𝑛u0
= 𝑃𝐷𝑛𝑃−1u0

= 1
𝜑 − 𝜓 [

𝜑 𝜓
1 1

] [
𝜑𝑛 0
0 𝜓𝑛

] [
1 −𝜓
−1 𝜑

] [
1
0
]

= 1
𝜑 − 𝜓 [

𝜑𝑛+1 𝜓𝑛+1

𝜑𝑛 𝜓𝑛
] [

1 −𝜓
−1 𝜑

] [
1
0
]

= 1
𝜑 − 𝜓 [

𝜑𝑛+1 − 𝜓𝑛+1 −𝜑𝑛+1𝜓 + 𝜓𝑛+1𝜑
𝜑𝑛 − 𝜓𝑛 −𝜓𝜑𝑛 + 𝜑𝑛𝜓

] [
1
0
]

= 1
𝜑 − 𝜓 [

𝜑𝑛+1 − 𝜓𝑛+1

𝜑𝑛 − 𝜓𝑛
]

= [
𝐹𝑛+1
𝐹𝑛

] .

(46)

6. The last line in Equation (46) comes from the definition of u𝑛 in Equation (37). Equating

components,

𝐹𝑛 =
1

𝜑 − 𝜓 [𝜑
𝑛 − 𝜓𝑛]

= 1
√5

[𝜑𝑛 − 𝜓𝑛]

which is again Binet’s formula as stated in Equation (10), derived this time using linear

algebra.

7. The matrix 𝐴when raised to the 𝑛th power actually embodies the 𝑛th and surrounding terms

of Fibonacci sequence in its very entries. This will be discussed further in the section The

Companion Matrix below.

This entire method generalizes naturally to any linear recurrence with constant coefficients.

Points to Ponder

It has been a long and arduous trek to get here. The wonder is that although the routes we took

were mathematically different, the destination that we reached has been the same in all three

cases. This is because the edifice of mathematics is logically consistent and unshakably strong. It

is built to endure.

12See my blog Eigenvalues and Eigenvectors—Why are they important?.
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In this section, I have penned the thoughts that occurred to me while I was writing this blog. When

computing Fibonacci numbers—especially using Binet’s formula—we need to bear in mind a few

computational considerations.

For example, because of the√5 in Binet’s formula, when we compute it programmatically, we are

forced to use floating point arithmetic, which does not output integers. We must use a rounding

function to get the Fibonacci integers correctly.

Approximation

Binet’s formula holds within itself a rough and ready approximation of the 𝑛th Fibonacci number.

Of the two numbers in the Binet formula, |𝜑| > 1, whereas |𝜓| < 1. The question then naturally

arises, “When may we ignore the second term?”, whose absolute value is

||||
𝜓𝑛

√5

||||
.

The greatest value of the above expression is when 𝑛 = 0when it equals
1
√5

≈ 0.44721which is

less than 0.5. Therefore, we may drop the second term for all values of 𝑛.13

Accordingly, we may use

𝐹𝑛 ≈ round [
𝜑𝑛

√5
]

= round [ 1
√5

[1 + √5]
𝑛
]

(47)

for all values of 𝑛. Note that round stands for the rounding function.

Precision and accuracy

When a computer program is written in any language there are several constraints to bear in

mind:

(a) Total memory available on the machine;

(b) The size of the largest integers or floats that are supported in that language; and

(c) Whether floats are used instead of integers, because their representation in binary is not

always exact.

While Binet’s formula is a time-saver, it is not particularly suited to computational accuracy. The

reason is the appearance of the irrational number√5 in Binet’s formula which forces any program

implementing it to use floats. For example, a standard double precision provides about 15 decimal

digits of precision.

Estimating the limits of precision is a little tricky because it is dependent on the machine, the

programming language, and its implementation. The limits will occur in the vicinity of the

13See my blog The Two Most Important Numbers: Zero and One if this statement sounds cryptic to you.
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Fibonacci numbers that are fifteen digits long. We estimate the number 𝑛 associated with the

limits of precision by requiring:

𝐹𝑛 ≈ 1015

≈
𝜑𝑛

√(5)
; taking logarithms

𝑛 ≈
log10(10

15) + log10(√5)
log10(𝜑)

≈ 73.447

(48)

The Fibonacci numbers having fifteen digits are for values of 𝑛 ∈ {69, 70, 71, 72, 73} [11,12]. We

therefore expect computational errors to start manifesting from numbers in the above set. Note

that our calculated value of 𝑛 = 73 occurs at the high end of this band. Observe also that for

𝑛 ≥ 74, the Fibonacci numbers are 16 or more digits long, as demonstrated in the tabulation

below.

The Julia script recur-binet-seventy.jl illustrates the onset of rounding errors inmy computer

implementation:

n Recurrence Binet Approximate Binet

69 117669030460994 117669030460994 117669030460994

70 190392490709135 190392490709135 190392490709135

71 308061521170129 308061521170130 308061521170130

72 498454011879264 498454011879265 498454011879265

73 806515533049393 806515533049395 806515533049395

74 1304969544928657 1304969544928660 1304969544928660

75 2111485077978050 2111485077978055 2111485077978055

The Fibonacci number 𝐹71 has 15 digits: 308,061,521,170,129 and the errors start manifesting at

𝑛 = 71 as shown above. We were in the right ball park as far as the estimation in Equation (48) is

concerned.

Note that the values put out by the approximation in Equation (47) and the full Binet formula are

identical in the above table.

But what is the remedy for the slippage in accuracy?

We resort to the types BigInt and BigFloat provided by Julia with a configurable precision

in bits. The code is available in the file recur-binet-comp-big.jl. The output from this file

confirms that the first one huncred Fibonacci numbers are the same whether computed by the

recurrence formula or by the Binet formula. We have thus overcome the limitations in precision

and accuracy, at least for the first one hundred Fibonacci numbers.

The Companion Matrix

There is, in addition, a sneaky method by which we may implement the recurrence formula using

matrices: it is solely integer-based and does not suffer from floating point rounding errors. And it
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may be optimized for speed.

The matrix 𝐴 is called the companion matrix for the Fibonacci sequence [13]:

u𝑛 = 𝐴𝑛u0

[
𝐹𝑛+1
𝐹𝑛

] = [
1 1
1 0

]
𝑛

[
1
0
]

(49)

Surely, the powers of the matrix 𝐴 must encode the Fibonacci numbers within themselves in

order to generate the entire sequence as 𝑛 is varied. We tabulate below five values of 𝑛 for which

the matrix 𝐴𝑛 has been evaluated.

𝐴1 = [
1 1
1 0

]

𝐴2 = [
2 1
1 1

]

𝐴3 = [
3 2
2 1

]

𝐴4 = [
5 3
3 2

]

𝐴5 = [
8 5
5 3

]

The pattern that emerges leads us to infer that

𝐴𝑛 = [
𝐹𝑛+1 𝐹𝑛
𝐹𝑛 𝐹𝑛−1

] (50)

which may be proved by induction, by harking back to Equation (1).

So, the matrix 𝐴𝑛 gives us three values for each exponentiation. The new value 𝐹𝑛+1 is the matrix

entry at the first row and column at the top left hand corner, conventionally referred to as 𝑎11.

If we can raise the integer-valued matrix 𝐴 to the 𝑛th power, we will have at our fingertips a

method to compute the 𝑛th Fibonacci number on demand, bypassing inaccuracies arising from

floating point arithmetic.

A Julia script to do just that is available as fibonacci-matrix.jl, and it has been used to compute

the first one hundred Fibonacci numbers correctly, thanks to integer arithmetic and fast matrix

algorithms.

The perceptive among you might have realized that we are really using the original definition

of Equation (1) here, and you would be correct. This method is attractive simply because linear

algebra has spawned many efficient algorithms that make matrix computations fast and reliable

in comparison to naive recursion using the original recurrence relation.

Integers from irrationals?

The Fibonacci sequence is composed entirely of integers, whereas Binet’s formula embodies the

irrational number √5 as its centrepiece. How is this possible? How can a discrete recurrence
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relation formula involving only integers have a closed-form solution involving irrational numbers?

Is there any guarantee that we will not get an irrational Fibonacci number?

The answer is a resounding “Yes!”. There are three ways to look at this, outlined below.

Recurrence Relation

The defining recurrence relation itself, Equation (1), enforces each Fibonacci number to the be

the sum of the preceding two integers. Because addition among the integers is a closed operation,

the result is also guaranteed to be an integer.

Exponentiating the Companion Matrix

The top left entry of 𝐴𝑛 is the value of 𝐹𝑛+2. Since Matrix 𝐴 starts out as shown in Equation (41)

and since its entries are composed of multiplications and additions of integers which are closed

for the integers, we again have a guarantee of integer-valued Fibonacci numbers.

Algebra of the Binet formula

While the above arguments are solid, the presence of√5 in Binet’s formula does give rise to room

for doubt. Let us backtrack a bit to better understand Binet’s formula from the standpoint of

abstract algebra, albeit without too much jargon. Note that the unnumbered equations below

have all been encountered before; only the new ones are numbered.

1. In its literal form, Binet’s formula, Equation (10), is:

𝐹𝑛 =
1
√5

([
1 + √5

2 ]
𝑛

− [
1 − √5

2 ]
𝑛

) .

This is purely a sum, quotient, and exponentiation of numbers that needs to be evaluated for

any given 𝑛 ∈ ℕ𝟘. The only variable is the exponent 𝑛. Also, note the generous presence of
the irrational number√5 in the numerator and denominator of the expression. Our goal is

to prove to ourselves, unlikely though it might seem, that this expression will always evaluate

to an integer.

2. The first step is to make the substitutions

𝜑 = 1 + √5
2

𝜓 = 1 − √5
2 .

Binet’s formula may now be written as

𝐹𝑛 =
𝜑𝑛 − 𝜓𝑛

√5
.

3. The second step is to observe that (𝜑 − 𝜓) = √5 . If we substitute√5with this expression,
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we end up with [14]:

𝐹𝑛 = [
𝜑𝑛 − 𝜓𝑛

𝜑 − 𝜓 ] . (51)

4. We are used to replacing symbols with numbers when evaluating formulae. But why would

we proceed in the opposite direction and replace perfectly clear numbers with symbols? This

change of viewpoint converts a purely numerical exercise into fodder for abstract algebra.

To appreciate the logic, we need to digress a little to review the idea of a polynomial.

5. In high school and early university, we have known polynomials as expressions containing

variables that can be used to solve equations and graph functions. Untethering polynomials

from these tasks frees us to view and study them as mathematical objects in their own right.

And the insights therefrom are rewarding.

6. In abstract algebra, a polynomial represents a structure in which two elements—the coeffi-

cients and the something else—aremultiplied together and summed. This generic polynomial

may be defined as

𝑟 ≜ 𝑟𝑛𝑡𝑛 + 𝑟𝑛−1𝑡𝑛−1 +⋯+ 𝑟1𝑡 + 𝑟0

where 𝑟0…𝑟𝑛 ∈ ℂ and 𝑛 ∈ ℕ𝟘 while 𝑡 is undefined [15]. We call 𝑡 an indeterminate.

7. Why such a contrived definition? To facilitate a deeper study of the polynomial bereft of

its utilitarian underpinnings. The polynomial is simply a sum of products where one of the

multiplicands is a complex number.14 The other multiplicand may be generalized. The set of

polynomials so defined forms what is known as a ring of polynomials, ℂ[𝑡]. [15].

8. How didwe get𝜑 and𝜓? They are the two distinct roots to the equation 𝑃(𝑥) = 𝑥2−𝑥−1 = 0,
which is a non-zero polynomial having only integer coefficients. Because the coefficient of

its highest degree term—also called the leading coefficient—is one, 𝑃(𝑥) is called a monic

polynomial.

9. Now, for any quadratic equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0, with roots 𝛼 and 𝛽, we know that the

sum of the roots (𝛼 + 𝛽) = −𝑏
𝑎

and the product of the roots, (𝛼𝛽) = 𝑐
𝑎
. In our case, the

roots of 𝑃(𝑥) = 0 are the numbers 𝜑 and 𝜓. Note that because the coefficients of 𝑃(𝑥) are
known—even if we do not know the values of 𝜑 and 𝜓—we do know the sum and the product

of the roots as:

𝜑 + 𝜓 = −(−1)
1 = 1

𝜑𝜓 = −1
1 = −1.

This is something quite powerful, even if under-recognized. The known coefficients of the

polynomial tell us something about the unknown roots even before the equation is solved.

10. When we do solve for 𝑃(𝑥), as already known, we get two distinct roots

𝜑 = 1 + √5
2

𝜓 = 1 − √5
2

14Complex numbers also include real numbers.
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Although these roots of 𝑃(𝑥) = 0 embody the irrational number√5, they are called, believe
it or not, algebraic integers because 𝑃(𝑥) is a monic polynomial with integer coefficients.

11. We have now converted the Binet formula from a number needing to be evaluated into a

ratio of polynomials in 𝜑 and 𝜓, even though they are both numbers themselves rather than

variables. In any other context, if we had talked of a polynomial where the “variables” are

numbers, it would have been laughable. But the vantage of abstract algebra allows us to do

this to better understand the algebraic structure of the expression. We can now view 𝐹𝑛 as a

polynomial in two indeterminates [15]

12. Let𝑁(𝜑, 𝜓) = 𝜑𝑛−𝜓𝑛 and𝐷(𝜑, 𝜓) = 𝜑−𝜓 be the numerator and denominator polynomials

in Binet’s formula. If we interchanged 𝜑 and 𝜓 in each of them, we will get the negative of

the original:

𝑁(𝜑, 𝜓) = 𝜑𝑛 − 𝜓𝑛

𝑁(𝜓, 𝜑) = 𝜓𝑛 − 𝜑𝑛 = −(𝜑𝑛 − 𝜓𝑛) = −𝑁(𝜑, 𝜓)
𝐷(𝜑, 𝜓) = 𝜑 − 𝜓
𝐷(𝜓, 𝜑) = 𝜓 − 𝜑 = −(𝜑 − 𝜓) = −𝐷(𝜑, 𝜓).

Because of this change in sign, both 𝑁(𝜑, 𝜓) and 𝐷(𝜑, 𝜓) are called alternating or anti-

symmetric polynomials. But when we take their quotient, the two changes of sign in the

numerator and denominator, cancel out and the result is a symmetric polynomial:

𝑓(𝜑, 𝜓) =
𝑁(𝜑, 𝜓)
𝐷(𝜑, 𝜓)

= [
𝜑𝑛 − 𝜓𝑛

𝜑 − 𝜓 ] =
𝑁(𝜓, 𝜑)
𝐷(𝜓, 𝜑)

= [
𝜓𝑛 − 𝜑𝑛

𝜓 − 𝜑 ] = 𝑓(𝜓, 𝜑).

13. As written in Equation (51), Binet’s formula is now a quotient of polynomials which, taken as

a whole, is symmetric, not in some unknown variables, but in the known algebraic integers

𝜑 and 𝜓 as “indeterminates”. We may re-verify this symmetry by interchanging 𝜑 and 𝜓 to

get the original polynomial again, by multiplying both numerator and denominator by (−1
−1
):

𝑓(𝜑, 𝜓) = [
𝜑𝑛 − 𝜓𝑛

𝜑 − 𝜓 ] ; multiply by (−1−1)

= [
−1(𝜑𝑛 − 𝜓𝑛)
−1(𝜑 − 𝜓) ]

= [
𝜓𝑛 − 𝜑𝑛

𝜓 − 𝜑 ]

= 𝑓(𝜓, 𝜑).

14. Binet’s formula is a symmetric, polynomial of degree 𝑛 − 1, with integer coefficients, in two

algebraic integers, 𝜑 and 𝜓 as the “indeterminates”.

15. Why do we need 𝑃(𝑥) to be a monic polynomial? And what is so special about it? Because

only for monic polynomials with 𝑎 = 1 do the sums and products of roots equal simple

integer coefficients, rather than rational numbers. Hark back to the sum and product of the

roots. The generic quadratic 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 becomes monic when 𝑎 = 1. And the sum
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and product of its roots become

𝜑 + 𝜓 = −𝑏
𝑎 = −𝑏

1 = −𝑏

𝜑𝜓 = 𝑐
𝑎 = 𝑐

1 = 𝑐.
(52)

The sum and product of its roots are simply the signed coefficients of 𝑃(𝑥), which are integers.

16. Why dowe need a symmetric polynomial in 𝑓(𝜑, 𝜓)? The fundamental theorem of symmetric

polynomials [15,16] states that every symmetric polynomial may be expressed as a linear

sum of elementary symmetric polynomials.

17. And, pray, what are these latter mathematical objects? For 𝜑 and 𝜓 they are the sum and

product of these two: (𝜑 + 𝜓), and (𝜑𝜓). The expression
𝜑𝑛−𝜓𝑛

𝜑−𝜓
—which is a symmetric

polynomial in 𝜑 and 𝜓, with integer coefficients—can be expressed as a polynomial in the

elementary symmetric polynomials (𝜑 + 𝜓) and (𝜑𝜓) with integer coefficients.

18. Because (𝜑+𝜓) = 1 and (𝜑𝜓) = −1, the symmetric polynomial representing the Binet formula,

when expressed in terms of elementary symmetric polynomials, evaluates to an integer.

19. There is an additional, clean way of demonstrating this using long division. The quotient in

Equation (51) may be shown to be exact, without remainder, and a symmetrical polynomial

itself:
(𝜑𝑛 − 𝜓𝑛) = (𝜑 − 𝜓)(𝜑𝑛−1𝜓0 + 𝜑𝑛−2𝜓 +⋯+ 𝜑1𝜓𝑛−2 + 𝜑0𝜓𝑛−1) i.e.,

𝜑𝑛 − 𝜓𝑛

𝜑 − 𝜓 =
𝑛−1
∑
𝑘=0

𝜑𝑛−1−𝑘𝜓𝑘.

Mere inspection will reveal this as a symmetric polynomial and there is no remainder. The

quotient is expressible as a linear sum of the elementary symmetric polynomials (𝜑+𝜓) = 1
and (𝜑𝜓) = −1, and will therefore be an integer itself.

20. Whew! We have at long last demonstrated that the formula of Binet does give us integers for

all 𝑛.

Comment on polynomial long division

It is striking that polynomial long division has been featured twice in our mathematical journey.

Once, it was used in the context of formal power series to obtain a generating function. The second

time, it was used in the ring of symmetric polynomials to assert the integral value of the Binet

formula. In both cases, it has aided in prising open results that would otherwise have been more

tedious to obtain.

Centrality of the characteristic equation.

The polynomials 𝑃(𝑥), 𝑄(𝑥) and the numbers 𝜑 and 𝜓 pop up along the way regardless of our

approach to obtaining a closed form solution to the Fibonacci recurrence relation. These objects

are, in a manner of speaking, embedded in the structure of Fibonacci sequence and they show up

whenever we start digging into it. They are central to it.
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Continuous function version

Is there a continuous function, whose values at integers give us the Fibonacci sequence? In such a

case, the Fibonacci sequence will be a discretely-sampled version of that function. This tempting

thought occurred to me as I was writing this blog.

When the Fibonacci numbers are shown as data points and plotted with piecewise linear interpol-

ation by Gnuplot, we get an impressive curve connecting the values of the Fibonacci sequence. It

is shown in Figure 2. The downside is that we do not have analytic function to describe this curve.

Figure 2: Plot of the first twenty-one Fibonacci numbers as filled circles. The line connecting the points
is a piecewise linear interpolation provided by Gnuplot. Unfortunately, it does not have a closed form
expression. See the text for a discussion onwhy an exact continuous analog of the sequence is fraught
with complications.

But is there a better way? Yes, but it is not trivial.

In the section Recurrence relations and differential equations earlier in this blog, we explored

the analogy between recurrence relations and differential equations and their respective “eigen-
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functions”: 𝜆𝑛 and 𝑒𝜆𝑥. However, we cannot assert that one is the continuous version of the other

simply because:

1.618 ≈ 𝜑 ≠ 𝑒𝜑 ≈ 5.043 ; therefore 𝜑𝑛 ≠ 𝑒𝜑𝑛 and

−0.618 ≈ 𝜓 ≠ 𝑒𝜓 ≈ 0.539 ; therefore 𝜓𝑛 ≠ 𝑒𝜓𝑛.
(53)

The logical way forward is to define a continuous-valued function based on the Binet formula. But

such a function does not have a standard name or symbol. Nevertheless, it is sensible to christen

it the Binet-Fibonacci function 𝐹(𝑥) for 𝑥 ∈ ℝ and define it so:

𝐹(𝑥) =
𝜑𝑥 − 𝜓𝑥

√5

= 𝑒𝑥 ln𝜑 − 𝑒𝑥 ln𝜓

√5
so that

𝐹(𝑛) =
𝜑𝑛 − 𝜓𝑛

√5

= 𝑒𝑛 ln𝜑 − 𝑒𝑛 ln𝜓

√5
= 𝐹𝑛.

(54)

We get the Fibonacci sequence by substituting 𝑥 = 𝑛 as shown in Equation (54).

However, because 𝜓 is negative and the logarithm of a negative number is complex,15 𝐹(𝑥) is a
complex-valued function. But when 𝑥 = 𝑛, 𝐹(𝑛) assumes only real values andwe get the Fibonacci

sequence. When 𝑥 is not an integer, we can and do get an imaginary part as well.

There is no complication with 𝜑𝑥 because it is a positive real number raised to a real power, whose

value will be real. The kid gloves must be put on only for 𝜓𝑥 because 𝜓 is a negative real number

that is ideally expressed using the polar form of a complex number before being exponentiated.

𝜓 = −|𝜓|
= |𝜓|(−1)
= |𝜓|𝑒𝑖𝜋

𝜓𝑥 = |𝜓|𝑥𝑒𝑖𝜋𝑥

(55)

The real part of 𝐹(𝑥) symbolized by 𝐹ℜ(𝑥) connects all the Fibonacci numbers in a perfectly

smooth curve as shown in Figure 3. Its equation is:

𝐹ℜ(𝑥) = [
𝜑𝑥 − 𝜓𝑥

√5
]

= [
𝜑𝑥 − |𝜓|𝑥 cos(𝜋𝑥)

√5
]

(56)

15See my blog A Tetrad of Captivating Problems to find out why.
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Likewise, the imaginary part of 𝐹(𝑥) is denoted by 𝐹ℑ(𝑥):

𝐹ℑ(𝑥) = [
𝜑𝑥 − 𝜓𝑥

√5
]

= [
−|𝜓|𝑥 sin(𝜋𝑥)

√5
]

(57)

It is now easy to verify that the imaginary part vanishes at integer values of 𝑛 because sin(𝜋𝑛) = 0

for every integer 𝑛. Thus 𝐹ℑ(𝑥) = −
|𝜓|𝑛 sin(𝜋𝑛)

√5
= 0. Equivalently, for integer 𝑛, we have

𝜓𝑛 = (−1)𝑛|𝜓|, which is real. So 𝜓𝑛 is real and hence 𝐹(𝑛) is real.

This interesting derivation shows that although 𝐹(𝑥) is a complex-valued function modelling the

Binet formula for continuous 𝑥, its values at 𝑥 = 𝑛 are not only real, but also integers. Does that

astound you? It still takes my breath away, every time I ponder it. We will now plot the real and

imaginary parts of this function 𝐹(𝑥).

Key Takeaways

The Fibonacci Equation (1) is a second order, linear, constant coefficient, homogeneous recur-

rence relation. These attributes are similar to those of second order, linear, constant coefficient,

homogeneous differential equations. Both share the characteristic equation as a gateway to their

solution.

The numbers 𝜑, the golden ratio, and its negative reciprocal, 𝜓, arising as the two solutions to

the polynomial 𝑥2 − 𝑥 − 1 = 0 have distinctive properties that account for the behaviour of the
Fibonacci sequence. Like 𝜋 and 𝑒 they are irrational numbers. Unlike them, though, they are

algebraic integers and algebraic numbers. Their sum, 𝜑 + 𝜓 = 1. Their product 𝜑𝜓 = −1.

Binet’s formula solves the Fibonacci recurrence and, in this blog, it is derived and proved using:

(a) mathematical induction;

(b) generating functions; and

(c) linear algebra.

The interlocking structural integrity of mathematics is thereby demonstrated because all three

approaches lead to the same formula of Binet.

Because the irrational number√5 occupies a central place in the formula, one might wonder how

it could lead to the integer-valued Fibonacci sequence. We have outlined reasons why this is so,

without going too much into the detailed abstract algebra that assures it.

The curve 𝐹ℜ(𝑥), representing the real part of 𝐹(𝑥)), is wondrous in that it is integer-valued at

the integers, i.e., for 𝑛 ∈ ℕ0, 𝐹ℜ(𝑛) ∈ ℕ0. This means that 𝐹(𝑛) is an integer to integer mapping,

which is exactly what an integer-valued sequence—like the Fibonacci sequence—really is.

Evenmore interesting is that at integers 𝑛, the imaginary part of 𝐹(𝑥), becomes zero, i.e., 𝐹ℑ(𝑛) = 0.
Therefore, 𝐹ℜ(𝑥) is the exact, continuous, real-valued function that connects the data points of the

Fibonacci sequence, even if 𝐹(𝑥) is complex-valued when the variable is not an integer.
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Figure 3: Graph of the real part, 𝐹ℜ(𝑥), of the continuous function 𝐹(𝑥)modelled on Binet’s formula.
The filled circles are the values of the Fibonacci sequence at integer values of 𝑥. See the box in Figure 2
for the values.
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Figure 4: Graph of the imaginary part, 𝐹ℑ(𝑥), of the continuous function 𝐹(𝑥)modelled on Binet’s
formula. The filled circles are the values at integers and are all zero, demonstrating that the Fibonacci
sequence is a real one.
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If these—and possibly other—properties cause astonishment in you, welcome to the club! The

mansion of Mathematics holds within itself countless such treasures.

Websites worth visiting

The Fibonacci numbers hold within themselves an endless fascination. I will likely blog about

them again in the future. Meanwhile, I have collated here some links to websites that expound on

the properties of the Fibonacci numbers.

1. Dr Ron Knott, a mathematician affiliated with the University of Surrey, has probably themost

exhaustive website dedicated to the Fibonacci numbers [17]. Definitely a site that should be

browsed.

2. Another interesting mathematical website that should be visited is Alexander Bogomolny’s

Cut the Knot website [18]. Not only does it show how the Binet formula may be derived from

generating functions, it contains a wealth of insights on many other mathematical topics.

3. The Fibonacci Quarterly [19] is a serious journal onmatters Fibonacci that has been published

since 1963. This shows the evergreen interest on the Fibonacci numbers and their impact on

many aspects of Nature and life in general.

4. Phil Nowell’s blog [20] shows how to derive the 𝑛th term of the Fibonacci sequence using

linear algebra, as we have done above in the section The Linear Algebra route.

5. For a discussion on the accuracy and efficiency of computing the Binet formula, see this blog

by Robin Houston [21].

6. A multiplicity of helpful viewpoints and answers is contained in this Mathematics Stack-

Exchange question [22]. It is an example of how interactions on the Web may be helpful,

enriching, and courteous.

7. The next two links were selected to show that fundamental questions could either attract

many answers [23] or just a few answers [24]. Regardless, the exchange of ideas will almost

always be enriching. Even if there is no explicit guarantee of correctness, it is unlikely that

grossly wrong answers will be permitted to prevail on Mathematics StackExchange.

8. Two other websites that discuss Binet’s formula, one with a mathematical flavour [25] and

the other with a computing flavour [26] are worth a visit as well.

By now you would have realized that any references to the Fibonacci numbers can only give a

limited and very partial glimpse into the subject. I am planning on writing further on the history

and other aspects of these fascinating numbers, and will include additional relevant references in

those blogs.

Epilogue

It was a good five months before I caught up with Sol after our encounter on the flight to Budapest.

I told him that my conceptualization and fulfilment of his request had taken considerable effort

and time.
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“Next time, I will be more circumspect in acquiescing to your requests,” I told Sol.

“Did you yourself learn anything in the process?” he asked quizzically.

“Yes, of course,” I replied truthfully.

“Understand then, that as long as you keep learning, you are keeping fit mentally and intellectually.

Have you ever taught anything to anyone without learning something yourself? Is this not true of

even the simplest of ideas, like those of addition or multiplication?” Sol queried me.

I could not but agree.

That was when whatever regrets I had—of time spent and effort expended—in writing this blog

on Binet’s formula, evaporated from my awareness. Explaining to another was definitely the

surest form of learning and consolidating my own knowledge.
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